Normal view
MARC view
Le machine learning avec Python (Record no. 15429)
[ view plain ]
000 -Etiquette de la notice | |
---|---|
Leader | 09669cam0a2200469 4500 |
009 - PPN | |
ppn | 224736191 |
003 - Identifiant de la notice | |
Identifiant | http://www.sudoc.fr/224736191 |
005 - Identifiant de la version | |
Identifiant | 20250630092525.0 |
010 ## - Numéro international normalisé du livre (ISBN) | |
ISBN | 9782412034460 |
Qualificatif | br. |
Disponibilité et/ou prix | 35 EUR |
073 #1 - EAN | |
Numéro normalisé | 9782412034460 |
099 ## - ESPCI local | |
Type de document Koha | Ouvrage |
ID Alexandrie | ALEX30717 |
100 ## - Données générales de traitement | |
Données générales de traitement | 20180306h20182018k y0frey50 ba |
101 1# - Langue de la ressource | |
Langue du texte, de la bande son, etc. | français |
Langue de l'oeuvre originale | anglais |
-- | 639-2 |
102 ## - Pays de publication ou de production | |
Pays de publication | France |
105 ## - Zone de données codées : textes, monographies | |
Données codées sur les monographies textuelles | a z 001yy |
106 ## - Zone de données codées : forme de la ressource | |
Données codées sur la forme de la ressource – Présentation matérielle | r |
181 ## - Zone de données codées : Forme de la ressource | |
Données de liaison entre champs | z01 |
Autre référentiel utilisé pour coder la forme du contenu | texte |
Code du référentiel | rdacontent |
181 #1 - Zone de données codées : Forme de la ressource | |
Données de liaison entre champs | z01 |
Forme du contenu selon l’ISBD sous forme codée | i# |
Qualificatif(s) du contenu selon l’ISBD sous forme codée | xxxe## |
182 ## - Zone de données codées : type de média | |
Données de liaison entre champs | z01 |
Autre référentiel utilisé pour coder le type de médiation | sans média |
Code du référentiel | rdamedia |
182 #1 - Zone de données codées : type de média | |
Données de liaison entre champs | z01 |
Type de médiation selon l’ISBD sous forme codée | sans média |
183 #1 - Zone de données codées : Type de carrière | |
Données de liaison entre champs | z01 |
Type de support sous forme codée | nga |
Code du référentiel | RDAfrCarrier |
200 1# - Titre et mention de responsabilité | |
Titre propre | Le machine learning avec Python |
Complément du titre | la bible des data scientists |
Première mention de responsabilité | Andreas C. Müller et Sarah Guido |
Mention de responsabilité suivante | [traduction de l'anglais, Daniel Rougé] |
214 #0 - Mentions de production, publication, diffusion et manufacture | |
Lieu de publication, production, distribution/diffusion, fabrication | Paris |
Nom de l’éditeur, du producteur, distributeur/diffuseur, fabricant | First interactive |
Date de publication, production, distribution/diffusion, fabrication, copyright | DL 2018 |
215 ## - Description physique | |
Type de présentation matérielle et importance matérielle | 1 vol. (XII-376 p.) |
Autres caractéristiques matérielles | ill., couv. ill. |
Dimensions | 23 cm |
306 ## - Note sur l'adresse bibliographique, etc. | |
Texte de la note | Le nom de l'éditeur (O'Reilly) de la version anglaise du livre figure sur la page de couverture |
320 ## - Bibliographies internes/Note d'index | |
Texte de la note | Index |
330 ## - Résumé ou extrait | |
Texte de la note | La 4e de couv. indique : "Le machine learning (ou apprentissage automatique) est désormais partie intégrante de nombreuses applications commerciales et projets de recherche. Mais ce domaine ne reste pas l'apanage des grandes entreprises dotées d'un département en recherche et développement. Si vous connaissez un minimum le langage de programmation Python, vous apprendrez grâce à ce livre à concevoir vos propres solutions de machine learning. Avec la masse de données qui circulent actuellement, la seule limite que peuvent connaître vos applications de machine learning, c'est votre imagination. Cet ouvrage énumère les étapes nécessaires à la création d'une application de machine learning réussie avec Python et la librairie scikit-learn. Ses auteurs se sont efforcés de ne pas trop insister sur les aspects mathématiques de l'apprentissage automatique, mais plutôt sur les utilisations pratiques de ces algorithmes. Si vous êtes déjà quelque peu familiarisé avec les librairies NumPy et matplotlib, vous n'en serez que plus à l'aise. Au programme de ce livre : concepts fondamentaux et applications de machine learning ; avantages et inconvénients d'utiliser les algorithmes de machine learning les plus courants ; comment représenter les données traitées par le machine learning, et sur lesquelles se concentrer ; méthodes avancées d'évaluation de modèle et ajustement des paramètres ; le concept de pipeline pour le chaînage des modèles et l'encapsulation du flux de travail ; techniques de traitement des données textuelles ; suggestions pour améliorer vos compétences en apprentissage automatique et en sciences des données" |
359 2# - | |
-- | P. ix |
-- | Préface |
-- | P. ix |
-- | Qui devrait lire ce livre ? |
-- | P. x |
-- | Pourquoi nous avons écrit ce livre |
-- | P. x |
-- | Naviguer dans le livre |
-- | P. xi |
-- | Conventions utilisées dans ce livre |
-- | P. xii |
-- | Utiliser les exemples de code |
-- | P. 1 |
-- | 1. Introduction |
-- | P. 2 |
-- | Pourquoi l'apprentissage automatique ? |
-- | P. 2 |
-- | Les problèmes que l'apprentissage automatique peut résoudre |
-- | P. 5 |
-- | Comprendre votre but et comprendre vos données |
-- | P. 6 |
-- | Pourquoi Python ? |
-- | P. 6 |
-- | scikit-learn |
-- | P. 7 |
-- | Installer scikit-learn |
-- | P. 8 |
-- | Librairies et outils essentiels |
-- | P. 8 |
-- | Jupyter Notebook |
-- | P. 9 |
-- | NumPy |
-- | P. 9 |
-- | SciPy |
-- | P. 10 |
-- | matplotlib |
-- | P. 11 |
-- | pandas |
-- | P. 12 |
-- | mglearn |
-- | P. 13 |
-- | Python 2 versus Python 3 |
-- | P. 13 |
-- | Versions utilisées dans ce livre |
-- | P. 15 |
-- | Une première application : classifier des espèces d'iris |
-- | P. 16 |
-- | À la rencontre des données |
-- | P. 19 |
-- | Mesurer la réussite : entraîner et tester les données |
-- | P. 20 |
-- | Au commencement de tout : vérifier vos données |
-- | P. 22 |
-- | Construire votre premier modèle : les K plus proches voisins |
-- | P. 24 |
-- | Faire des prédictions |
-- | P. 25 |
-- | Évaluer le modèle |
-- | P. 26 |
-- | Résumé et perspectives |
-- | P. 29 |
-- | 2. Apprentissage supervisé |
-- | P. 29 |
-- | Classification et régression |
-- | P. 30 |
-- | Généralisation, surapprentissage et sous-apprentissage |
-- | P. 33 |
-- | Relation entre complexité du modèle et taille du jeu de données |
-- | P. 33 |
-- | Algorithmes pour l'apprentissage automatique supervisé |
-- | P. 34 |
-- | Exemples de jeux de données |
-- | P. 38 |
-- | Les k plus proches voisins |
-- | P. 48 |
-- | Modèles linéaires |
-- | P. 71 |
-- | Classifieurs bayésiens naïfs |
-- | P. 73 |
-- | Arbres de décision |
-- | P. 86 |
-- | Ensembles d'arbres de décision |
-- | P. 95 |
-- | SVM à noyau |
-- | P. 107 |
-- | Réseaux de neurones (deep learning) |
-- | P. 121 |
-- | Estimer l'incertitude pour les classifieurs |
-- | P. 122 |
-- | La fonction de décision |
-- | P. 124 |
-- | Prédire les probabilités |
-- | P. 127 |
-- | Classification multiclasse et incertitude |
-- | P. 129 |
-- | Résumé et perspectives |
-- | P. 133 |
-- | 3. Apprentissage non supervisé et prétraitement |
-- | P. 133 |
-- | Types d'apprentissages non supervisés |
-- | P. 134 |
-- | Les défis de l'apprentissage non supervisé |
-- | P. 135 |
-- | Prétraitement et recalibrage |
-- | P. 135 |
-- | Différents types de prétraitement |
-- | P. 136 |
-- | Appliquer des transformations aux données |
-- | P. 139 |
-- | Recalibrer de la même manière le jeu d'apprentissage et le jeu de test |
-- | P. 141 |
-- | Effet du prétraitement sur l'apprentissage supervisé |
-- | P. 142 |
-- | Réduction de la dimension, extraction de caractéristiques et apprentissage de variétés |
-- | P. 143 |
-- | Analyse en composantes principales (PCA) |
-- | P. 159 |
-- | Factorisation en matrices non négatives (NMF) |
-- | P. 167 |
-- | Apprentissage de variétés avec t-SNE |
-- | P. 171 |
-- | Clustering |
-- | P. 171 |
-- | Partitionnement en k-moyennes |
-- | P. 185 |
-- | Clustering agglomératif |
-- | P. 189 |
-- | DBSCAN |
-- | P. 194 |
-- | Comparer et évaluer les algorithmes de clustering |
-- | P. 209 |
-- | Résumons les méthodes de clustering |
-- | P. 209 |
-- | Résumé et perspectives |
359 2# - | |
-- | P. 213 |
-- | 4. Représentation des données et ingénierie des caractéristiques |
-- | P. 214 |
-- | Variables catégorielles |
-- | P. 215 |
-- | Encodage one-hot (variables indicatrices) |
-- | P. 220 |
-- | Les nombres peuvent encoder des catégories |
-- | P. 222 |
-- | Binning, discrétisation, modèles linéaires et arbres |
-- | P. 226 |
-- | Interactions et polynômes |
-- | P. 234 |
-- | Transformations non linéaires univariées |
-- | P. 237 |
-- | Sélection automatique de caractéristiques |
-- | P. 238 |
-- | Statistiques univariées |
-- | P. 240 |
-- | Sélection de caractéristiques basée sur le modèle |
-- | P. 242 |
-- | Sélection itérative de caractéristiques |
-- | P. 243 |
-- | Savoir utiliser l'expertise |
-- | P. 252 |
-- | Résumé et perspectives |
-- | P. 253 |
-- | 5. Évaluation et amélioration du modèle |
-- | P. 254 |
-- | Validation croisée |
-- | P. 255 |
-- | Validation croisée dans scikit-learn |
-- | P. 256 |
-- | Bénéfices de la validation croisée |
-- | P. 257 |
-- | Validation croisée à k-plis stratifiée et autres stratégies |
-- | P. 263 |
-- | Recherche sur grille |
-- | P. 263 |
-- | Exemple simple de recherche sur grille |
-- | P. 264 |
-- | Le danger du surapprentissage des paramètres et du jeu de validation |
-- | P. 266 |
-- | Recherche sur grille avec validation croisée |
-- | P. 278 |
-- | Métriques dévaluation et scoring |
-- | P. 278 |
-- | Ne jamais oublier le but final |
-- | P. 279 |
-- | Métriques dévaluation pour la classification binaire |
-- | P. 300 |
-- | Métriques pour la classification multiclasse |
-- | P. 303 |
-- | Métriques de régression |
-- | P. 303 |
-- | Utiliser des métriques d'évaluation dans la sélection de modèles |
-- | P. 305 |
-- | Résumé et perspectives |
-- | P. 307 |
-- | 6. Chaînage d'algorithmes et pipelines |
-- | P. 308 |
-- | Sélection de paramètres avec prétraitement |
-- | P. 310 |
-- | Construire des pipelines |
-- | P. 311 |
-- | Utiliser des pipelines dans des recherches sur grille |
-- | P. 314 |
-- | Interface générale de la classe Pipeline |
-- | P. 315 |
-- | Créer facilement un pipeline avec make_pipeline |
-- | P. 317 |
-- | Accéder aux attributs des étapes |
-- | P. 317 |
-- | Accéder aux attributs d'un pipeline depuis GridSearchCV |
-- | P. 319 |
-- | Étapes de prétraitement et paramètres du modèle |
-- | P. 321 |
-- | Effectuer une recherche sur grille pour trouver quel modèle utiliser |
-- | P. 322 |
-- | Résumé et perspectives |
-- | P. 325 |
-- | 7. Travailler avec des données textuelles |
-- | P. 325 |
-- | Types de données représentés sous forme de chaînes de caractères |
-- | P. 327 |
-- | Exemple d'application : analyse de sentiment dans des commentaires de films |
-- | P. 330 |
-- | Représenter les données textuelles sous forme de sacs de mots |
-- | P. 331 |
-- | Appliquer une représentation par sac de mots à un jeu de données jouet |
-- | P. 333 |
-- | La représentation par sac de mots appliquée aux critiques de films |
-- | P. 337 |
-- | Mots vides (stop words) |
-- | P. 338 |
-- | Pondérer les données avec tf-idf |
-- | P. 341 |
-- | Investiguer les coefficients du modèle |
-- | P. 342 |
-- | Des sacs avec plusieurs mots (n-grammes) |
-- | P. 347 |
-- | Tokenisation avancée, racinisation et lemmatisation |
-- | P. 350 |
-- | Modèles de sujets et partitionnement de document |
-- | P. 350 |
-- | L'allocation de Dirichlet latente (LDA) |
-- | P. 357 |
-- | Résumé et perspectives |
-- | P. 359 |
-- | 8. Pour conclure |
-- | P. 359 |
-- | Aborder un problème d'apprentissage automatique |
-- | P. 360 |
-- | Est-ce qu'il y des humains dans la boucle ? |
-- | P. 361 |
-- | Du prototype à la production |
-- | P. 362 |
-- | Tester des systèmes de production |
-- | P. 362 |
-- | Construire votre propre estimateur |
-- | P. 363 |
-- | Pour aller plus loin |
-- | P. 363 |
-- | Théorie |
-- | P. 364 |
-- | Autres packages et ressources pour l'apprentissage automatique |
-- | P. 365 |
-- | Ranking, systèmes de recommandation, et autres types d'apprentissage |
-- | P. 365 |
-- | Inférence, programmation et modélisation probabiliste |
-- | P. 366 |
-- | Réseaux de neurones |
-- | P. 367 |
-- | Recalibrer les jeux de données |
-- | P. 368 |
-- | Améliorer vos compétences |
-- | P. 368 |
-- | Conclusion |
-- | P. 369 |
-- | Index |
454 ## - Traduction de | |
Titre de l'oeuvre | Introduction to machine learning with Python |
Nom de l'éditeur, du diffuseur, etc. | O'Reilly Media |
Date de publication | cop. 2017 |
605 ## - Titre - vedette matière | |
Identifiant de la notice d'autorité | 223831433 |
Élément d'entrée | Scikit-Learn |
Autres informations | logiciel |
Code du format utilisé | rameau |
606 ## - Sujet - Nom commun | |
Identifiant de la notice d'autorité | 027940373 |
Élément d'entrée | Apprentissage automatique |
Code du format utilisé | rameau |
606 ## - Sujet - Nom commun | |
Identifiant de la notice d'autorité | 051626225 |
Élément d'entrée | Python (langage de programmation) |
Code du format utilisé | rameau |
606 ## - Sujet - Nom commun | |
Identifiant de la notice d'autorité | 035198222 |
Élément d'entrée | Exploration de données |
Code du format utilisé | rameau |
676 ## - Classification décimale de Dewey | |
Indice | 006.31 |
Édition | 23 |
Langue de l'édition | fre |
680 ## - Classification de la Bibliothèque du Congrès | |
Indice | Q325.5 |
686 ## - Autres numéros de classification | |
Indice | 68T05 |
Subdivision de la classification | 2000 |
Code du format utilisé | msc |
700 #1 - Auteur principal | |
Identifiant de la notice d'autorité | 196396069 |
Élément d'entrée | Müller |
Partie du nom autre que l'élément d'entrée | Andreas C. |
Code de fonction | Auteur |
701 #1 - Coauteur | |
Identifiant de la notice d'autorité | 196396182 |
Élément d'entrée | Guido |
Partie du nom autre que l'élément d'entrée | Sarah |
Code de fonction | Auteur |
701 #1 - Coauteur | |
Identifiant de la notice d'autorité | 028974867 |
Élément d'entrée | Rougé |
Partie du nom autre que l'élément d'entrée | Daniel |
Dates | 1952-2020 |
Eléments ajoutés aux noms autres que les dates | mathématicien |
Code de fonction | Traducteur |
Perdu | Date de création | Site de rattachement | Site actuel | Localisation | Code à barres | Cote | Exclu du prêt | Type de document Koha |
---|---|---|---|---|---|---|---|---|
30/06/2025 | La bibliothèque de l'ESPCI | La bibliothèque de l'ESPCI | Magasin | IF-099 | IF-099 | Ouvrage |