Fundamentals of soft matter science / Linda S. Hirst ; with photographs and illustrations by Trevor P. Hirst
Item type | Current library | Call number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|
![]() |
La bibliothèque de l'ESPCI Salle de lecture | CP-147 (Browse shelf(Opens below)) | Available | CP-147 |
Bibliogr. en fin de chapitres. Glossaire. Index.
Machine generated contents note: ch. 1 Introduction Learning Objectives 1.1. What Is Soft Matter? 1.2. Basic Thermal Physics 1.2.1. Thermal Equilibrium 1.2.2. Phase Transitions 1.2.3. Solids, Liquids, and Gases 1.2.4. The Ideal Gas 1.3. Intermolecular Forces 1.3.1. The van der Waals Attraction 1.3.2. Hard Sphere Repulsion 1.3.3. Electrostatic Forces 1.3.4. The van der Waals Equation of State (for a Nonideal Gas) 1.3.5. Hydrophobic Effects and the Hydrogen Bond 1.4. Diffusion and Random Walks 1.5. Self-Assembly 1.6. The Phase Diagram 1.6.1. The Clausius Clapeyron Equation 1.7. Aggregation and Assembly 1.7.1. Power Laws and Fractals 1.8. Mechanical Properties of Soft Matter 1.8.1. Stress and Strain Questions The Concept of Soft Materials and Their Characteristics Review of Thermal Physics Review the Mechanical Properties of Materials References Further Reading ch. 2 Liquid Crystals Learning Objectives 2.1. Introduction to Liquid Crystals 2.1.1. What Is a Liquid Crystal? 2.2. Anisotropy in Liquid Crystals 2.3. The Order Parameter 2.4. Thermotropic and Lyotropic Liquid Crystals 2.5. Birefringence in Liquid Crystals 2.6. Defect Textures 2.7. Thermotropic Liquid Crystal Phases 2.7.1. The Nematic Phase 2.7.2. The Smectic Phases 2.7.3. Chirality in Liquid Crystals 2.7.4. The Cholesteric Phase 2.7.5. The Chiral Smectic Phases 2.7.6. Other Chiral Smectic Phases 2.7.7. The Bent-Core (Banana) Phases 2.7.8. Discotic Phases 2.8. Experimental Techniques 2.8.1. Deforming Liquid Crystals 2.8.2. Polarized Optical Microscopy 2.8.3. Electro-optical Measurements 2.8.4. The Dielectric Properties of Liquid Crystals 2.8.5. The Freedericksz Transition and Measurement of the Elastic Constants 2.8.6.X-ray Diffraction 2.8.7. Differential Scanning Calorimetry 2.9. Applications of Liquid Crystals 2.9.1. Liquid Crystal Displays 2.9.2. The Twisted Nematic Display 2.9.3. Spatial Light Modulators 2.9.4. Liquid Crystal Temperature Sensors Questions The Characteristics of Liquid Crystal Materials Anisotropy and Birefringence The Structure of Liquid Crystal Phases Experimental Techniques and Liquid Crystal Technologies References Further Reading ch. 3 Surfactants Learning Objectives 3.1. Introduction 3.2. Types of Surfactants 3.3. Surface Tension and Surfactants 3.4. Self-Assembly and Phase Behavior 3.4.1. The Micellar Phase and the Critical Micelle Concentration 3.4.2. Other Surfactant Phases 3.4.3. The Packing Parameter 3.5. Membrane Elasticity and Curvature 3.5.1. Bicontinuous Phases 3.6. Applications of Surfactants 3.6.1. Detergents 3.6.2. Detergent Foams 3.6.3. Emulsifiers and Emulsions 3.6.4.Commercial Paints and Inks 3.6.5. Surfactants and Gel Electrophoresis 3.6.6. Lung Surfactant 3.7. Experimental Methods 3.7.1. The Langmuir Trough 3.7.2. Measuring Surface Tension Questions Physical and Chemical Properties of Surfactants The Hydrophobic Effect The Importance of Molecular Shape on Phase Structure and Membrane Curvature References Further Reading ch. 4 Polymers Learning Objectives 4.1. Introduction 4.2. Early Polymers 4.3. Polymer Structure 4.4. Liquid Crystal Polymers 4.5. Polymer Solutions 4.5.1. The Ideal Chain 4.5.2. Excluded Volume and Solvent Effects 4.5.3. The Radius of Gyration 4.5.4. Increasing the Concentration of a Polymer Solution 4.5.5. Stretching a Polymer Chain: The Entropic Spring 4.5.6. Polyelectrolytes 4.5.7. Polymer Gels 4.5.8. Hydrogels 4.6. The Glassy and Polymer Melt Phases 4.7. The Mechanical Properties of Polymers 4.8. Experimental Techniques 4.8.1. Scattering Techniques 4.8.2. Polymer Spectroscopy 4.8.2.1. Fourier Transform Infrared Spectroscopy 4.8.2.2. Raman Spectroscopy 4.8.2.3. Nuclear Magnetic Resonance Questions Polymer Architecture Polymers in Solution Experimental Methods References Further Reading ch. 5 Colloidal Materials Learning Objectives 5.1. Introduction 5.2. Characteristics of Colloidal Systems 5.3. Colloids in Suspension 5.4.Competing Forces in Colloidal Dispersions 5.5. Interparticle Interactions 5.5.1.van der Waals Attraction 5.5.2. Electrostatic Forces 5.5.3. DLVO Theory 5.5.4. Depletion Forces 5.5.5. Steric Repulsion 5.6. Colloidal Aggregation 5.7. Colloidal Crystals 5.8. Granular Materials 5.9. Foams 5.9.1. Why Do Some Liquids Foam? 5.9.2. Soap Foams 5.9.3. Foam Stability 5.10. Experimental Techniques 5.10.1. Light Scattering 5.10.1.1. Light-Scattering Experiments 5.10.1.2. Static Light Scattering 5.10.1.3. Dynamic Light Scattering 5.10.2. Zeta Potential and the Electric Double Layer 5.10.3. Rheology Measurements 5.10.3.1.Common Rheometer Designs Questions Characteristics of Colloidal Systems Colloidal Aggregation and Dispersion Experimental Techniques References Further Reading ch. 6 Soft Biological Materials Learning Objectives 6.1. Introduction 6.2. The Composition of the Cell 6.3. The Cell Membrane 6.3.1. Lipid Phase Behavior 6.3.2. Lipid Domains and the Raft Hypothesis 6.3.3. Membrane Elasticity and Curvature in Biological Membranes 6.3.4. Other Fatty Biological Molecules 6.4. Protein Structures and Assemblies 6.4.1. Protein Filaments 6.4.2. The Cytoskeleton 6.4.3. Semiflexibility and the Persistence Length 6.4.4. The Nucleic Acids 6.4.5. The Structure of the Nucleic Acids 6.5. Experimental Techniques 6.5.1. Studying Membrane Behavior 6.5.1.1. Lipid Vesicles 6.5.1.2. Forming Giant Vesicles by Electroformation 6.5.1.3. Imaging Membranes Using Atomic Force Microscopy 6.5.2. Fluorescence Microscopy 6.5.3. Confocal Fluorescence Microscopy 6.5.4. Other Fluorescence Microscopic Techniques 6.5.5. Transmission Electron Microscopy on Soft Biological Structures 6.5.6.X-ray Scattering from Biological Assemblies 6.5.7. Examples of X-ray Scattering Data from Soft Biological Structures 6.5.8. Nuclear Magnetic Resonance in Biology Questions Biomaterials as Soft Matter Experimental Techniques References Further Reading