Catalogue des documents imprimés de la bibliothèque
Normal view MARC view

Theory of simple glasses : exact solutions in infinite dimensions / Giorgio Parisi, Pierfrancesco Urbani, Francesco Zamponi

Ouvrage
Auteur principal: Parisi, Giorgio, 1948-...., physicien, AuteurCo-auteur: Urbani, Pierfrancesco, 1986-...., physicien, AuteurZamponi, Francesco, 1979-...., physicien, AuteurLangue : anglaisPays : Etats-Unis.Publication : New York : Cambridge University PressDistribution : Cambridge : Cambridge University Press, 2020ISBN : 1108120490; 978-1-108-12049-4.Note de contenu : Infinite-dimensional models in statistical physics Atomic liquids in infinite dimensions: thermodynamics Atomic liquids in infinite dimensions: equilibrium dynamics Thermodynamics of glass states Replica symmetry breaking and hierarchical free energy landscapes The Gardner transition Counting glass states: the complexity Packing spheres in large dimensions The jamming transition Rheology of the glass Résumé : This pedagogical and self-contained text describes the modern mean field theory of simple structural glasses. The book begins with a thorough explanation of infinite-dimensional models in statistical physics, before reviewing the key elements of the thermodynamic theory of liquids and the dynamical properties of liquids and glasses. The central feature of the mean field theory of disordered systems, the existence of a large multiplicity of metastable states, is then introduced. The replica method is then covered, before the final chapters describe important, advanced topics such as Gardner transitions, complexity, packing spheres in large dimensions, the jamming transition, and the rheology of glass. Presenting the theory in a clear and pedagogical style, this is an excellent resource for researchers and graduate students working in condensed matter physics and statistical mechanics.Bibliographie : Notes bibliogr. Index..Sujet - Nom commun: Matériaux amorphes | Verre | Matière condensée | Physique de l'état solide Ressources en ligne :Cliquez ici pour consulter en ligne
Holdings
Item type Current library Call number Status Date due Barcode
Ouvrage Ouvrage La bibliothèque de l'ESPCI Salle de lecture PF-020 (Browse shelf(Opens below)) Available PF-020

"Most of the solid matter in nature is not crystalline, but amorphous: glasses, foams, pastes, granulars, and plastics, are but a few examples. These materials are not only ubiquitous, but also extremely important for practical, everyday applications. For simplicity, in the rest of this book we call these materials "glasses"--Préface

Description d’après consultation du 2021-10-28

L’impression du document génère XVI-324 pages

Titre provenant de l’écran-titre

Titre provenant des métadonnées fournies par l'éditeur

Notes bibliogr. Index.

Infinite-dimensional models in statistical physics Atomic liquids in infinite dimensions: thermodynamics Atomic liquids in infinite dimensions: equilibrium dynamics Thermodynamics of glass states Replica symmetry breaking and hierarchical free energy landscapes The Gardner transition Counting glass states: the complexity Packing spheres in large dimensions The jamming transition Rheology of the glass

This pedagogical and self-contained text describes the modern mean field theory of simple structural glasses. The book begins with a thorough explanation of infinite-dimensional models in statistical physics, before reviewing the key elements of the thermodynamic theory of liquids and the dynamical properties of liquids and glasses. The central feature of the mean field theory of disordered systems, the existence of a large multiplicity of metastable states, is then introduced. The replica method is then covered, before the final chapters describe important, advanced topics such as Gardner transitions, complexity, packing spheres in large dimensions, the jamming transition, and the rheology of glass. Presenting the theory in a clear and pedagogical style, this is an excellent resource for researchers and graduate students working in condensed matter physics and statistical mechanics

Navigateur Internet

PDF L'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition Cambridge University Press