Catalogue des documents imprimés de la bibliothèque
Normal view MARC view

The spectrum of a Schrödinger operator in a wire-like domain with a purely imaginary degenerate potential in the semiclassical limit / Y. Almog, B. Helffer

Ouvrage
Niveau de l'ensemble: Mémoire de la Société mathématique de France, 0249-633X, 166Auteur principal: Almog, Yaniv, 19..-...., mathématicien, AuteurCo-auteur: Helffer, Bernard, 1949-...., AuteurLangue : anglais, du résumé, anglais, du résumé, françaisPays : France.Publication : Paris : Société mathématique de France, 2020Description: 1 vol. (vi-94 p.), ill., 24 cmISBN : 9782856299289.Résumé : Consider a two-dimensional domain shaped like a wire, not necessarily of uniform cross section. Let V denote an electric potential driven by a voltage drop between the conducting surfaces of the wire. We consider the operator Ah=−h2Δ+iV in the semi-classical limit h→0. We obtain both the asymptotic behavior of the left margin of the spectrum, as well as resolvent estimates on the left side of this margin. We extend here previous results obtained for potentials for which the set where the current (or ∇V) is normal to the boundary is discrete, in contrast with the present case where V is constant along the conducting surfaces. [source : 4e de couv.].Bibliographie : Bibliogr. p. [91]-92.Sujet - Nom commun: Schrödinger, Opérateur de | Théorie de Ginzburg-Landau

Résumé en anglais et en français

N° de : "Mémoires de la Société mathématique de France", ISSN 0249-633X, (2020)n°166

Bibliogr. p. [91]-92

Consider a two-dimensional domain shaped like a wire, not necessarily of uniform cross section. Let V denote an electric potential driven by a voltage drop between the conducting surfaces of the wire. We consider the operator Ah=−h2Δ+iV in the semi-classical limit h→0. We obtain both the asymptotic behavior of the left margin of the spectrum, as well as resolvent estimates on the left side of this margin. We extend here previous results obtained for potentials for which the set where the current (or ∇V) is normal to the boundary is discrete, in contrast with the present case where V is constant along the conducting surfaces. [source : 4e de couv.]