Catalogue des documents imprimés de la bibliothèque
Normal view MARC view

Chemical applications of group theory / F. Albert Cotton

Ouvrage
Auteur principal: Cotton, Frank Albert, 1930-2007, AuteurLangue : anglaisPays : Etats-Unis.Mention d'édition: 2nd editionPublication : New York [etc.] : Wiley-InterscienceDate du copyright : 1971Description: 1 vol. (XIV-386 p.), ill., 23 cm, 1 fascicule sous pochetteISBN : 0471175706.Bibliographie : Bibliogr. p. 380-382. Index.Sujet - Nom commun: Théorie des groupes | Théorie moléculaire | Chimie quantique | Spectroscopie | Molecular theory | Group theory | Chemistry
Holdings
Item type Current library Call number Status Date due Barcode
Ouvrage Ouvrage La bibliothèque de l'ESPCI Salle de lecture IN-026 (Browse shelf(Opens below)) Available IN-026

Bibliogr. p. 380-382. Index

Part I. Principles P. 1 1. Introduction P. 4 2. Definitions and theorems of group theory P. 4 2.1 The defining properties of a group P. 6 2.2 Some examples of groups P. 10 2.3 Subgroups P. 11 2.4 Classes P. 13 Exercises P. 14 3. Molecular symmetry and the symmetry groups P. 14 3.1 General remarks P. 14 3.2 Symmetry elements and operation P. 16 3.3 Symmetry planes and reflections P. 19 3.4 The invasion center P. 19 3.5 Proper axes and proper rotations P. 24 3.6 Improper axes and improper rotations P. 27 3.7 Products of symmetry operations P. 29 3.8 Equivalent symmetry elements and equivalent atoms P. 31 3.9 General relations among symmetry elements and operations P. 32 3.10 Symmetry elements and optical isomerism P. 33 3.11 The symmetry point groups P. 39 3.12 Symmetries with multiple high-order axes P. 45 3.13 A systematic procedure for symmetry classification of molecules P. 47 3.14 Illustrative examples P. 52 3.15 Classes of symmetry operations P. 56 Exercises P. 62 4. Representations of groups P. 62 4.1 Some Properties of matrices and vectors P. 75 4.2 Representations of groups P. 78 4.3 The "great orthogonality theorem" and its consequences P. 86 4.4 Character tables P. 88 4.5 Representations for cyclic groups P. 92 Exercises P. 93 5. Group theory and quantum mechanics P. 93 5.1 Wave functions as bases for irreducible representations P. 98 5.2 The direct product P. 101 5.3 Identifying non zero matrix elements P. 104 Exercises P. 105 6. Symmetry-adapted linear combinations P. 105 6.1 Introductory remarks P. 105 6.2 Projection operators P. 111 6.3 Some illustrations P. 119 Exercises Part II. Applications P. 123 7. Symmetry aspects of molecular orbital theory P. 123 7.1 General principles P. 130 7.2 Symmetry factoring of secular equations P. 133 7.3 Carbocyclic systems P. 149 7.4 More general cases of LCAO-MO π bonding P. 161 7.5 A worked example : naphthalene P. 165 7.6 Electronic excitations of naphthalene : selection rules and configuration interaction P. 170 7.7 Three-center bonding P. 178 7.8 Symmetry-based "selection rules" for cyclization reactions P. 191 Exercises P. 194 8. Hybrid orbitals and molecular orbitals for ABn-Type molecules P. 194 8.1 Introduction P. 194 8.2 Transformation properties of atomic orbitals P. 199 8.3 Hybridization schemes for σ orbitals P. 204 8.4 Hybridization schemes for π bonding P. 213 8.5 Hybrid orbitals as linear combinations of atomic orbitals P. 217 8.6 Molecular orbitals theory for ABn-type molecules P. 222 8.7 The relationship of the molecular orbital and the hybridization treatments P. 224 8.8 Molecular orbitals for regular octahedral and tetrahedral molecules P. 230 8.9 Molecular orbitals for metal sandwich compounds P. 241 Exercises P. 242 9. Ligand field theory P. 242 9.1 Introductory remarks P. 243 9.2 Electronic structures of free atoms and ions P. 249 9.3 Splitting of levels and terms in a chemical environment P. 254 9.4 Construction of energy level diagrams P. 272 9.5 Estimation of orbital energies P. 280 9.6 Selection rules and polarizations P. 289 9.7 Double groups P. 294 Exercises P. 295 10. Molecular vibrations P. 295 10.1 Introductory remarks P. 295 10.2 The symmetry of normal vibrations P. 300 10.3 Determining the symmetry types of the normal modes P. 306 10.4 Contributions of particular internal coordinates to normal modes P. 309 10.5 How to calculate force constants ; The F and G matrix method P. 316 10.6 Selection rules for fundamental vibrational transitions P. 320 10.7 Illustrative examples P. 330 10.8 Some important special effects P. 339 Exercises Part III. Appendices P. 343 I. Crystallographic point groups, stereographic projections and international (Hermann-Maguin) notation P. 349 II. Expansion of determinants and the inverse of a matrix P. 354 III. Character tables for chemically important symmetry groups P. 365 IV. A caveat concerning the resonance integral P. 368 V. The shapes of f orbitals P. 370 VI. A sample semi-empirical molecular orbital calculation : BF3 by the extended Hückel method P. 376 VII. Character tables for some double groups P. 376 VIII. Elements of the g matrix P. 380 IX. Reading list