000 01839cam0a2200457 4500
001 13465
009 060757299
003 http://www.sudoc.fr/060757299
005 20250630092329.0
010 _a0387987800
_brel.
010 _a978-0-387-98780-4
073 0 _a9780587987304
090 _a13465
099 _tOUVR
_zALEX26152
100 _a20020503d2000 k y0frey50 ba
101 0 _aeng
_eeng
_feng
_2639-2
102 _aUS
105 _aa a 001yy
106 _ar
181 _6z01
_ctxt
_2rdacontent
181 1 _6z01
_ai#
_bxxxe##
182 _6z01
_cn
_2rdamedia
182 1 _6z01
_an
183 1 _6z01
_anga
_2RDAfrCarrier
200 1 _a˜The œnature of statistical learning theory
_fVladimir N. Vapnik
205 _a2nd edition
214 0 _aNew York
_cSpringer
214 4 _dC 2000
215 _a1 volume (xix-314 pages)
_cillustrations, couverture illustrée en couleur
_d24 cm
225 2 _aStatistics for engineering and information science
320 _aBibliographie p. [301]-309. Index
330 _aThe aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques
410 _0068927835
_tStatistics for engineering and information science
606 _3027940373
_aApprentissage automatique
_3027545555
_xMéthodes statistiques
_2rameau
606 _3032889690
_aModèles stochastiques d'apprentissage
_2rameau
676 _a006.310 151
676 _a519.5
686 _a68T05
_c2010
_2msc
686 _a60F10
_c2010
_2msc
686 _a62G99
_c2010
_2msc
700 1 _3034266208
_aVapnik
_bVladimir Naoumovitch
_4070