000 | 01839cam0a2200457 4500 | ||
---|---|---|---|
001 | 13465 | ||
009 | 060757299 | ||
003 | http://www.sudoc.fr/060757299 | ||
005 | 20250630092329.0 | ||
010 |
_a0387987800 _brel. |
||
010 | _a978-0-387-98780-4 | ||
073 | 0 | _a9780587987304 | |
090 | _a13465 | ||
099 |
_tOUVR _zALEX26152 |
||
100 | _a20020503d2000 k y0frey50 ba | ||
101 | 0 |
_aeng _eeng _feng _2639-2 |
|
102 | _aUS | ||
105 | _aa a 001yy | ||
106 | _ar | ||
181 |
_6z01 _ctxt _2rdacontent |
||
181 | 1 |
_6z01 _ai# _bxxxe## |
|
182 |
_6z01 _cn _2rdamedia |
||
182 | 1 |
_6z01 _an |
|
183 | 1 |
_6z01 _anga _2RDAfrCarrier |
|
200 | 1 |
_aThe nature of statistical learning theory _fVladimir N. Vapnik |
|
205 | _a2nd edition | ||
214 | 0 |
_aNew York _cSpringer |
|
214 | 4 | _dC 2000 | |
215 |
_a1 volume (xix-314 pages) _cillustrations, couverture illustrée en couleur _d24 cm |
||
225 | 2 | _aStatistics for engineering and information science | |
320 | _aBibliographie p. [301]-309. Index | ||
330 | _aThe aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques | ||
410 |
_0068927835 _tStatistics for engineering and information science |
||
606 |
_3027940373 _aApprentissage automatique _3027545555 _xMéthodes statistiques _2rameau |
||
606 |
_3032889690 _aModèles stochastiques d'apprentissage _2rameau |
||
676 | _a006.310 151 | ||
676 | _a519.5 | ||
686 |
_a68T05 _c2010 _2msc |
||
686 |
_a60F10 _c2010 _2msc |
||
686 |
_a62G99 _c2010 _2msc |
||
700 | 1 |
_3034266208 _aVapnik _bVladimir Naoumovitch _4070 |