000 07255cam0a2200409 4500
001 13605
009 234442794
003 http://www.sudoc.fr/234442794
005 20250630092339.0
010 _a9781439827758
010 _a1-4398-2775-3
020 _aUS
_b2012016409
073 1 _a9781439827758
090 _a13605
099 _tOUVR
_zALEX26437
100 _a20190307d2013 k y0frey50 ba
101 0 _aeng
_2639-2
102 _aUS
105 _aa a 001yy
106 _ar
181 _6z01
_ctxt
_2rdacontent
181 1 _6z01
_ai#
_bxxxe##
182 _6z01
_cn
_2rdamedia
182 1 _6z01
_an
183 1 _6z01
_anga
_2RDAfrCarrier
200 1 _aFundamentals of soft matter science
_fLinda S. Hirst
_gwith photographs and illustrations by Trevor P. Hirst
214 0 _aBoca Raton
_cCRC Press
214 4 _dC 2013
215 _a1 vol.(xix- 226 p.)
_cill. en coul.
_d26 cm
320 _aBibliogr. en fin de chapitres. Glossaire. Index.
359 2 _bMachine generated contents note: ch. 1 Introduction
_bLearning Objectives
_b1.1. What Is Soft Matter?
_b1.2. Basic Thermal Physics
_b1.2.1. Thermal Equilibrium
_b1.2.2. Phase Transitions
_b1.2.3. Solids, Liquids, and Gases
_b1.2.4. The Ideal Gas
_b1.3. Intermolecular Forces
_b1.3.1. The van der Waals Attraction
_b1.3.2. Hard Sphere Repulsion
_b1.3.3. Electrostatic Forces
_b1.3.4. The van der Waals Equation of State (for a Nonideal Gas)
_b1.3.5. Hydrophobic Effects and the Hydrogen Bond
_b1.4. Diffusion and Random Walks
_b1.5. Self-Assembly
_b1.6. The Phase Diagram
_b1.6.1. The Clausius
_bClapeyron Equation
_b1.7. Aggregation and Assembly
_b1.7.1. Power Laws and Fractals
_b1.8. Mechanical Properties of Soft Matter
_b1.8.1. Stress and Strain
_bQuestions
_bThe Concept of Soft Materials and Their Characteristics
_bReview of Thermal Physics
_bReview the Mechanical Properties of Materials
_bReferences
_bFurther Reading
_bch. 2 Liquid Crystals
_bLearning Objectives
_b2.1. Introduction to Liquid Crystals
_b2.1.1. What Is a Liquid Crystal?
_b2.2. Anisotropy in Liquid Crystals
_b2.3. The Order Parameter
_b2.4. Thermotropic and Lyotropic Liquid Crystals
_b2.5. Birefringence in Liquid Crystals
_b2.6. Defect Textures
_b2.7. Thermotropic Liquid Crystal Phases
_b2.7.1. The Nematic Phase
_b2.7.2. The Smectic Phases
_b2.7.3. Chirality in Liquid Crystals
_b2.7.4. The Cholesteric Phase
_b2.7.5. The Chiral Smectic Phases
_b2.7.6. Other Chiral Smectic Phases
_b2.7.7. The Bent-Core (Banana) Phases
_b2.7.8. Discotic Phases
_b2.8. Experimental Techniques
_b2.8.1. Deforming Liquid Crystals
_b2.8.2. Polarized Optical Microscopy
_b2.8.3. Electro-optical Measurements
_b2.8.4. The Dielectric Properties of Liquid Crystals
_b2.8.5. The Freedericksz Transition and Measurement of the Elastic Constants
_b2.8.6.X-ray Diffraction
_b2.8.7. Differential Scanning Calorimetry
_b2.9. Applications of Liquid Crystals
_b2.9.1. Liquid Crystal Displays
_b2.9.2. The Twisted Nematic Display
_b2.9.3. Spatial Light Modulators
_b2.9.4. Liquid Crystal Temperature Sensors
_bQuestions
_bThe Characteristics of Liquid Crystal Materials
_bAnisotropy and Birefringence
_bThe Structure of Liquid Crystal Phases
_bExperimental Techniques and Liquid Crystal Technologies
_bReferences
_bFurther Reading
_bch. 3 Surfactants
_bLearning Objectives
_b3.1. Introduction
_b3.2. Types of Surfactants
_b3.3. Surface Tension and Surfactants
_b3.4. Self-Assembly and Phase Behavior
_b3.4.1. The Micellar Phase and the Critical Micelle Concentration
_b3.4.2. Other Surfactant Phases
_b3.4.3. The Packing Parameter
_b3.5. Membrane Elasticity and Curvature
_b3.5.1. Bicontinuous Phases
_b3.6. Applications of Surfactants
_b3.6.1. Detergents
_b3.6.2. Detergent Foams
_b3.6.3. Emulsifiers and Emulsions
_b3.6.4.Commercial Paints and Inks
_b3.6.5. Surfactants and Gel Electrophoresis
_b3.6.6. Lung Surfactant
_b3.7. Experimental Methods
_b3.7.1. The Langmuir Trough
_b3.7.2. Measuring Surface Tension
_bQuestions
_bPhysical and Chemical Properties of Surfactants
_bThe Hydrophobic Effect
_bThe Importance of Molecular Shape on Phase Structure and Membrane Curvature
_bReferences
_bFurther Reading
_bch. 4 Polymers
_bLearning Objectives
_b4.1. Introduction
_b4.2. Early Polymers
_b4.3. Polymer Structure
_b4.4. Liquid Crystal Polymers
_b4.5. Polymer Solutions
_b4.5.1. The Ideal Chain
_b4.5.2. Excluded Volume and Solvent Effects
_b4.5.3. The Radius of Gyration
_b4.5.4. Increasing the Concentration of a Polymer Solution
_b4.5.5. Stretching a Polymer Chain: The Entropic Spring
_b4.5.6. Polyelectrolytes
_b4.5.7. Polymer Gels
_b4.5.8. Hydrogels
_b4.6. The Glassy and Polymer Melt Phases
_b4.7. The Mechanical Properties of Polymers
_b4.8. Experimental Techniques
_b4.8.1. Scattering Techniques
_b4.8.2. Polymer Spectroscopy
_b4.8.2.1. Fourier Transform Infrared Spectroscopy
_b4.8.2.2. Raman Spectroscopy
_b4.8.2.3. Nuclear Magnetic Resonance
_bQuestions
_bPolymer Architecture
_bPolymers in Solution
_bExperimental Methods
_bReferences
_bFurther Reading
_bch. 5 Colloidal Materials
_bLearning Objectives
_b5.1. Introduction
_b5.2. Characteristics of Colloidal Systems
_b5.3. Colloids in Suspension
_b5.4.Competing Forces in Colloidal Dispersions
_b5.5. Interparticle Interactions
_b5.5.1.van der Waals Attraction
_b5.5.2. Electrostatic Forces
_b5.5.3. DLVO Theory
_b5.5.4. Depletion Forces
_b5.5.5. Steric Repulsion
_b5.6. Colloidal Aggregation
_b5.7. Colloidal Crystals
_b5.8. Granular Materials
_b5.9. Foams
_b5.9.1. Why Do Some Liquids Foam?
_b5.9.2. Soap Foams
_b5.9.3. Foam Stability
_b5.10. Experimental Techniques
_b5.10.1. Light Scattering
_b5.10.1.1. Light-Scattering Experiments
_b5.10.1.2. Static Light Scattering
_b5.10.1.3. Dynamic Light Scattering
_b5.10.2. Zeta Potential and the Electric Double Layer
_b5.10.3. Rheology Measurements
_b5.10.3.1.Common Rheometer Designs
_bQuestions
_bCharacteristics of Colloidal Systems
_bColloidal Aggregation and Dispersion
_bExperimental Techniques
_bReferences
_bFurther Reading
_bch. 6 Soft Biological Materials
_bLearning Objectives
_b6.1. Introduction
_b6.2. The Composition of the Cell
_b6.3. The Cell Membrane
_b6.3.1. Lipid Phase Behavior
_b6.3.2. Lipid Domains and the Raft Hypothesis
_b6.3.3. Membrane Elasticity and Curvature in Biological Membranes
_b6.3.4. Other Fatty Biological Molecules
_b6.4. Protein Structures and Assemblies
_b6.4.1. Protein Filaments
_b6.4.2. The Cytoskeleton
_b6.4.3. Semiflexibility and the Persistence Length
_b6.4.4. The Nucleic Acids
_b6.4.5. The Structure of the Nucleic Acids
_b6.5. Experimental Techniques
_b6.5.1. Studying Membrane Behavior
_b6.5.1.1. Lipid Vesicles
_b6.5.1.2. Forming Giant Vesicles by Electroformation
_b6.5.1.3. Imaging Membranes Using Atomic Force Microscopy
_b6.5.2. Fluorescence Microscopy
_b6.5.3. Confocal Fluorescence Microscopy
_b6.5.4. Other Fluorescence Microscopic Techniques
_b6.5.5. Transmission Electron Microscopy on Soft Biological Structures
_b6.5.6.X-ray Scattering from Biological Assemblies
_b6.5.7. Examples of X-ray Scattering Data from Soft Biological Structures
_b6.5.8. Nuclear Magnetic Resonance in Biology
_bQuestions
_bBiomaterials as Soft Matter
_bExperimental Techniques
_bReferences
_bFurther Reading
606 _3076742393
_aMatière molle (physique)
_2rameau
606 _aSoft condensed matter
_2lc
606 0 _aanyagtudomány
_2lc
676 _a530.4/1
_v23
680 _aQC173.458.S62
_bH57 2013
700 1 _3234443634
_aHirst
_bLinda S.
_4070