000 | 07255cam0a2200409 4500 | ||
---|---|---|---|
001 | 13605 | ||
009 | 234442794 | ||
003 | http://www.sudoc.fr/234442794 | ||
005 | 20250630092339.0 | ||
010 | _a9781439827758 | ||
010 | _a1-4398-2775-3 | ||
020 |
_aUS _b2012016409 |
||
073 | 1 | _a9781439827758 | |
090 | _a13605 | ||
099 |
_tOUVR _zALEX26437 |
||
100 | _a20190307d2013 k y0frey50 ba | ||
101 | 0 |
_aeng _2639-2 |
|
102 | _aUS | ||
105 | _aa a 001yy | ||
106 | _ar | ||
181 |
_6z01 _ctxt _2rdacontent |
||
181 | 1 |
_6z01 _ai# _bxxxe## |
|
182 |
_6z01 _cn _2rdamedia |
||
182 | 1 |
_6z01 _an |
|
183 | 1 |
_6z01 _anga _2RDAfrCarrier |
|
200 | 1 |
_aFundamentals of soft matter science _fLinda S. Hirst _gwith photographs and illustrations by Trevor P. Hirst |
|
214 | 0 |
_aBoca Raton _cCRC Press |
|
214 | 4 | _dC 2013 | |
215 |
_a1 vol.(xix- 226 p.) _cill. en coul. _d26 cm |
||
320 | _aBibliogr. en fin de chapitres. Glossaire. Index. | ||
359 | 2 |
_bMachine generated contents note: ch. 1 Introduction _bLearning Objectives _b1.1. What Is Soft Matter? _b1.2. Basic Thermal Physics _b1.2.1. Thermal Equilibrium _b1.2.2. Phase Transitions _b1.2.3. Solids, Liquids, and Gases _b1.2.4. The Ideal Gas _b1.3. Intermolecular Forces _b1.3.1. The van der Waals Attraction _b1.3.2. Hard Sphere Repulsion _b1.3.3. Electrostatic Forces _b1.3.4. The van der Waals Equation of State (for a Nonideal Gas) _b1.3.5. Hydrophobic Effects and the Hydrogen Bond _b1.4. Diffusion and Random Walks _b1.5. Self-Assembly _b1.6. The Phase Diagram _b1.6.1. The Clausius _bClapeyron Equation _b1.7. Aggregation and Assembly _b1.7.1. Power Laws and Fractals _b1.8. Mechanical Properties of Soft Matter _b1.8.1. Stress and Strain _bQuestions _bThe Concept of Soft Materials and Their Characteristics _bReview of Thermal Physics _bReview the Mechanical Properties of Materials _bReferences _bFurther Reading _bch. 2 Liquid Crystals _bLearning Objectives _b2.1. Introduction to Liquid Crystals _b2.1.1. What Is a Liquid Crystal? _b2.2. Anisotropy in Liquid Crystals _b2.3. The Order Parameter _b2.4. Thermotropic and Lyotropic Liquid Crystals _b2.5. Birefringence in Liquid Crystals _b2.6. Defect Textures _b2.7. Thermotropic Liquid Crystal Phases _b2.7.1. The Nematic Phase _b2.7.2. The Smectic Phases _b2.7.3. Chirality in Liquid Crystals _b2.7.4. The Cholesteric Phase _b2.7.5. The Chiral Smectic Phases _b2.7.6. Other Chiral Smectic Phases _b2.7.7. The Bent-Core (Banana) Phases _b2.7.8. Discotic Phases _b2.8. Experimental Techniques _b2.8.1. Deforming Liquid Crystals _b2.8.2. Polarized Optical Microscopy _b2.8.3. Electro-optical Measurements _b2.8.4. The Dielectric Properties of Liquid Crystals _b2.8.5. The Freedericksz Transition and Measurement of the Elastic Constants _b2.8.6.X-ray Diffraction _b2.8.7. Differential Scanning Calorimetry _b2.9. Applications of Liquid Crystals _b2.9.1. Liquid Crystal Displays _b2.9.2. The Twisted Nematic Display _b2.9.3. Spatial Light Modulators _b2.9.4. Liquid Crystal Temperature Sensors _bQuestions _bThe Characteristics of Liquid Crystal Materials _bAnisotropy and Birefringence _bThe Structure of Liquid Crystal Phases _bExperimental Techniques and Liquid Crystal Technologies _bReferences _bFurther Reading _bch. 3 Surfactants _bLearning Objectives _b3.1. Introduction _b3.2. Types of Surfactants _b3.3. Surface Tension and Surfactants _b3.4. Self-Assembly and Phase Behavior _b3.4.1. The Micellar Phase and the Critical Micelle Concentration _b3.4.2. Other Surfactant Phases _b3.4.3. The Packing Parameter _b3.5. Membrane Elasticity and Curvature _b3.5.1. Bicontinuous Phases _b3.6. Applications of Surfactants _b3.6.1. Detergents _b3.6.2. Detergent Foams _b3.6.3. Emulsifiers and Emulsions _b3.6.4.Commercial Paints and Inks _b3.6.5. Surfactants and Gel Electrophoresis _b3.6.6. Lung Surfactant _b3.7. Experimental Methods _b3.7.1. The Langmuir Trough _b3.7.2. Measuring Surface Tension _bQuestions _bPhysical and Chemical Properties of Surfactants _bThe Hydrophobic Effect _bThe Importance of Molecular Shape on Phase Structure and Membrane Curvature _bReferences _bFurther Reading _bch. 4 Polymers _bLearning Objectives _b4.1. Introduction _b4.2. Early Polymers _b4.3. Polymer Structure _b4.4. Liquid Crystal Polymers _b4.5. Polymer Solutions _b4.5.1. The Ideal Chain _b4.5.2. Excluded Volume and Solvent Effects _b4.5.3. The Radius of Gyration _b4.5.4. Increasing the Concentration of a Polymer Solution _b4.5.5. Stretching a Polymer Chain: The Entropic Spring _b4.5.6. Polyelectrolytes _b4.5.7. Polymer Gels _b4.5.8. Hydrogels _b4.6. The Glassy and Polymer Melt Phases _b4.7. The Mechanical Properties of Polymers _b4.8. Experimental Techniques _b4.8.1. Scattering Techniques _b4.8.2. Polymer Spectroscopy _b4.8.2.1. Fourier Transform Infrared Spectroscopy _b4.8.2.2. Raman Spectroscopy _b4.8.2.3. Nuclear Magnetic Resonance _bQuestions _bPolymer Architecture _bPolymers in Solution _bExperimental Methods _bReferences _bFurther Reading _bch. 5 Colloidal Materials _bLearning Objectives _b5.1. Introduction _b5.2. Characteristics of Colloidal Systems _b5.3. Colloids in Suspension _b5.4.Competing Forces in Colloidal Dispersions _b5.5. Interparticle Interactions _b5.5.1.van der Waals Attraction _b5.5.2. Electrostatic Forces _b5.5.3. DLVO Theory _b5.5.4. Depletion Forces _b5.5.5. Steric Repulsion _b5.6. Colloidal Aggregation _b5.7. Colloidal Crystals _b5.8. Granular Materials _b5.9. Foams _b5.9.1. Why Do Some Liquids Foam? _b5.9.2. Soap Foams _b5.9.3. Foam Stability _b5.10. Experimental Techniques _b5.10.1. Light Scattering _b5.10.1.1. Light-Scattering Experiments _b5.10.1.2. Static Light Scattering _b5.10.1.3. Dynamic Light Scattering _b5.10.2. Zeta Potential and the Electric Double Layer _b5.10.3. Rheology Measurements _b5.10.3.1.Common Rheometer Designs _bQuestions _bCharacteristics of Colloidal Systems _bColloidal Aggregation and Dispersion _bExperimental Techniques _bReferences _bFurther Reading _bch. 6 Soft Biological Materials _bLearning Objectives _b6.1. Introduction _b6.2. The Composition of the Cell _b6.3. The Cell Membrane _b6.3.1. Lipid Phase Behavior _b6.3.2. Lipid Domains and the Raft Hypothesis _b6.3.3. Membrane Elasticity and Curvature in Biological Membranes _b6.3.4. Other Fatty Biological Molecules _b6.4. Protein Structures and Assemblies _b6.4.1. Protein Filaments _b6.4.2. The Cytoskeleton _b6.4.3. Semiflexibility and the Persistence Length _b6.4.4. The Nucleic Acids _b6.4.5. The Structure of the Nucleic Acids _b6.5. Experimental Techniques _b6.5.1. Studying Membrane Behavior _b6.5.1.1. Lipid Vesicles _b6.5.1.2. Forming Giant Vesicles by Electroformation _b6.5.1.3. Imaging Membranes Using Atomic Force Microscopy _b6.5.2. Fluorescence Microscopy _b6.5.3. Confocal Fluorescence Microscopy _b6.5.4. Other Fluorescence Microscopic Techniques _b6.5.5. Transmission Electron Microscopy on Soft Biological Structures _b6.5.6.X-ray Scattering from Biological Assemblies _b6.5.7. Examples of X-ray Scattering Data from Soft Biological Structures _b6.5.8. Nuclear Magnetic Resonance in Biology _bQuestions _bBiomaterials as Soft Matter _bExperimental Techniques _bReferences _bFurther Reading |
|
606 |
_3076742393 _aMatière molle (physique) _2rameau |
||
606 |
_aSoft condensed matter _2lc |
||
606 | 0 |
_aanyagtudomány _2lc |
|
676 |
_a530.4/1 _v23 |
||
680 |
_aQC173.458.S62 _bH57 2013 |
||
700 | 1 |
_3234443634 _aHirst _bLinda S. _4070 |