000 03499cam0a2200493 4500
001 14888
009 224464531
003 http://www.sudoc.fr/224464531
005 20250630092457.0
010 _a9781107078208
010 _a1-107-07820-2
010 _a978-1-107-43516-2
_brel
010 _a1-107-43516-1
020 _aUS
_b2014035298
020 _aGB
_bB4D6681
073 1 _a9781493972548
090 _a14888
099 _tOUVR
_zALEX29685
100 _a20180222d2015 u y0engy50 ba
101 0 _aeng
_2639-2
102 _aUS
105 _aa a 001|y
181 _6z01
_ctxt
_2rdacontent
181 1 _6z01
_ai#
_bxxxe##
182 _6z01
_cn
_2rdamedia
182 1 _6z01
_an
183 1 _6z01
_anga
_2RDAfrCarrier
200 1 _aElectricity and magnetism for mathematicians
_ea guided path from Maxwell's equations to Yang-Mills
_fThomas A. Garrity, Williams College, Williamstown, Massachusetts
_gwith illustrations by Nicholas Neumann-Chun
214 0 _aNew York
_cCambridge University Press
_d2015
215 _a1 vol. (XIV-282 pages)
_cillustrations
_d24 cm
320 _aRéf. bibliographiques pages 275-278. Index
327 1 _aA brief history
_aMaxwell's equations
_aElectromagnetic waves
_aSpecial relativity
_aMechanics and Maxwell's equations
_aMechanics, Lagrangians, and the calculus of variations
_aPotentials
_aLagrangians and electromagnetic forces
_aDifferential forms
_aThe Hodge [star] operator
_aThe electromagnetic two-form
_aSome mathematics needed for quantum mechanics
_aSome quantum mechanical thinking
_aQuantum mechanics of harmonic oscillators
_aQuantizing Maxwell's equations
_aManifolds
_aVector bundles
_aConnections
_aCurvature
_aMaxwell via connections and curvature
_aThe Lagrangian machine, Yang–Mills, and other forces
330 _aThis text is an introduction to some of the mathematical wonders of Maxwell's equations. These equations led to the prediction of radio waves, the realization that light is a type of electromagnetic wave, and the discovery of the special theory of relativity. In fact, almost all current descriptions of the fundamental laws of the universe can be viewed as deep generalizations of Maxwell's equations. Even more surprising is that these equations and their generalizations have led to some of the most important mathematical discoveries of the past thirty years. It seems that the mathematics behind Maxwell's equations is endless. The goal of this book is to explain to mathematicians the underlying physics behind electricity and magnetism and to show their connections to mathematics. Starting with Maxwell's equations, the reader is led to such topics as the special theory of relativity, differential forms, quantum mechanics, manifolds, tangent bundles, connections, and curvature. Does not assume any knowledge of physics, and only basic undergraduate mathematics.--Publisher website
606 _aElectromagnetic theory
_xMathematics
_xTextbooks
_2lc
606 _3027233030
_aÉlectromagnétisme
_2rameau
606 _3031719236
_aGéométrie différentielle globale
_2rameau
606 _302739087X
_aAnalyse globale (mathématiques)
_2rameau
606 _302731569X
_aThéorie quantique
_2rameau
606 _aElectromagnetic theory
_xMathematics
_xTextbooks
_2lc
608 _303020934X
_aManuels d'enseignement supérieur
_2rameau
676 _a537.01/51
_v23
680 _aQC670
_b.G376 2015
700 1 _314639304X
_aGarrity
_bThomas A.
_f1959-....
_4070
702 1 _3224499270
_aNeumann-Chun
_bNicholas
_4440