000 04399cam0a2200565 4500
001 14924
009 197875416
003 http://www.sudoc.fr/197875416
005 20250630092458.0
010 _a9780486806990
_bbr.
010 _a0-486-80699-5
_bbr.
073 0 _a9780486806990
090 _a14924
099 _tOUVR
_zALEX29748
100 _a20170126h20162016k y0frey50 ba
101 0 _aeng
_2639-2
102 _aUS
105 _aa a 001yy
106 _ar
181 _6z01
_ctxt
_2rdacontent
181 1 _6z01
_ai#
_bxxxe##
182 _6z01
_cn
_2rdamedia
182 1 _6z01
_an
183 1 _6z01
_anga
_2RDAfrCarrier
200 1 _aDifferential geometry of curves & surfaces
_fManfredo P. do Carmo,...
205 _aRevised & updated 2nd edition
214 0 _aMineola, New York
_cDover Publications, Inc.
214 4 _dC 2016
215 _a1 vol. (XVI-510 p.)
_cill., fig., graph.
_d23 cm
320 _aBibliogr. p. 475-477. Index
330 _aLa 4e de couverture indique : "One of the most widely used texts in its field, this volume introduces the differential geometry of curves and surfaces in both local and global aspects. The presentation departs from the traditional approach with its more extensive use of elementary linear algebra and its emphasis on basic geometrical facts rather than machinery or random details. Many examples and exercises enhance the clear, well-written exposition, along with hints and answers to some of the problems. The treatment begins with a chapter on curves, followed by explorations of regular surfaces, the geometry of the Gauss map, the intrinsic geometry of surfaces, and global differential geometry. Suitable for advanced undergraduates and graduate students of mathematics, this text's prerequisites include an undergraduate course in linear algebra and some familiarity with the calculus of several variables. For this second edition, the author has corrected, revised, and updated the entire volume"
359 1 _b1. Curves
_cParametrized curves
_cRegular curves; arc length
_cThe vector product in R³
_cThe local theory of curves parametrized by arc length
_cThe local canonical form
_cGlobal properties of plane curves
_b2. Regular surfaces
_cRegular surfaces: inverse images of regular values
_cChange of parameters: differential be functions on surface
_cThe tangent plane: the differential of a map
_cThe first fundamental form: area
_cOrientation of surfaces
_cA characterization of compact orientable surfaces
_cA geometric definition of area
_cAppendix: A brief review of continuity and differentiability
_b3. The geometry of the Gauss map
_cThe definition of the Gauss map and its fundamental properties
_cThe Gauss map in local coordinates
_cVector fields
_cRuled surfaces and minimal surfaces
_cAppendix: Self-adjoint linear maps and quadratic forms
_b4. The intrinsic geometry of surfaces
_cIsometrics: conformal maps
_cThe Gauss theorem and the equations of compatibility
_cParallel transport, Geodesics
_cThe Gauss-Bonnet theorem and its applications
_cThe exponential map. Geodesic polar coordinates
_cFurther properties of geodesics: convex neighborhoods
_cAppendix: Proofs of the fundamental theorems of the local theory of curves and surfaces
_b5. Global differential geometry
_cThe rigidity of the sphere
_cComplete surfaces Theorem of Hopf-Rinow
_cFirst and second variations of arc length: Bonnet's theorem
_cJacobi fields and conjugate points
_cCovering spaces: the theorems of Hadamard
_cGlobal theorems for curves: the Fary-Milnor theorem
_cSurfaces of zero Gaussian curvature
_cJacobi's theorems
_cAbstract surfaces: further generalizations
_cHilbert's theorem
_cAppendix: Point-set topology of Euclidean spaces
517 _aDifferential geometry of curves and surfaces
606 _aGeometry, Differential
_2lc
606 _aCurves
_2lc
606 _aSurfaces
_2lc
606 _3027569918
_aGéométrie différentielle
_2rameau
606 _3027355675
_aCourbes
_2rameau
606 _3027586510
_aSurfaces (mathématiques)
_2rameau
676 _a516.36
_v23
680 _aQA641
_b.C33 2016
686 _a53-01
_c2020
_2msc
686 _a53A05
_c2020
_2msc
686 _a53A10
_c2020
_2msc
686 _a53B20
_c2020
_2msc
686 _a53B25
_c2020
_2msc
686 _a53C20
_c2020
_2msc
686 _a53C40
_c2020
_2msc
686 _a53C45
_c2020
_2msc
700 1 _3032335687
_aCarmo
_bManfredo Perdigão do
_f1928-2018
_4070