000 | 06466clm0a2200841 4500 | ||
---|---|---|---|
001 | 14928 | ||
009 | 134127897 | ||
003 | http://www.sudoc.fr/134127897 | ||
005 | 20250630092459.0 | ||
010 | _a9780387848587 | ||
017 | 7 | 0 |
_a10.1007/978-0-387-84858-7 _2DOI |
090 | _a14928 | ||
099 |
_tOUVR _zALEX29754 |
||
100 | _a20090610f20 k y0frey50 ba | ||
101 | 0 |
_aeng _2639-2 |
|
102 | _aUS | ||
105 | _ay a 001yy | ||
135 | _adr||||||||||| | ||
181 |
_6z01 _ctxt _2rdacontent |
||
181 | 1 |
_6z01 _ai# _bxxxe## |
|
182 |
_6z01 _cc _2rdamedia |
||
182 | 1 |
_6z01 _ab |
|
183 | 1 |
_6z01 _aceb _2RDAfrCarrier |
|
200 | 1 |
_aThe elements of statistical learning _edata mining, inference, and prediction _fTrevor Hastie, Robert Tibshirani, Jerome Friedman |
|
205 | _aSecond edition | ||
214 | 0 |
_aNew York, NY _cSpringer New York |
|
214 | 2 |
_aCham _cSpringer Nature _d[20..] |
|
225 | 0 |
_aSpringer Series in Statistics _x2197-568X |
|
320 | _aBibliogr. p. [699]-727 de l'édition imprimée Index | ||
327 | 1 |
_aOverview of Supervised Learning _aLinear Methods for Regression _aLinear Methods for Classification _aBasis Expansions and Regularization _aKernel Smoothing Methods _aModel Assessment and Selection _aModel Inference and Averaging _aAdditive Models, Trees, and Related Methods _aBoosting and Additive Trees _aNeural Networks _aSupport Vector Machines and Flexible Discriminants _aPrototype Methods and Nearest-Neighbors _aUnsupervised Learning _aRandom Forests _aEnsemble Learning _aUndirected Graphical Models _aHigh-Dimensional Problems: p ? N |
|
330 | _aDuring the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression and path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting | ||
371 | 0 | _aAccès en ligne pour les établissements français bénéficiaires des licences nationales | |
371 | 0 | _aAccès soumis à abonnement pour tout autre établissement | |
371 | 1 |
_aConditions particulières de réutilisation pour les bénéficiaires des licences nationales _chttps://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017 |
|
410 |
_0161243738 _tSpringer series in statistics (Internet) _x2197-568X |
||
452 |
_0159033705 _tThe elements of statistical learning _odata mining, inference, and prediction _fTrevor Hastie, Robert Tibshirani, Jerome Friedman _e2nd edition, corrected at 5th printing _p1 vol. (XXII- 745 p.) _sSpringer series in statistics |
||
452 |
_tThe Elements of Statistical Learning _bTexte imprimé _y9780387848846 |
||
452 |
_tThe Elements of Statistical Learning _bTexte imprimé _y9780387848570 |
||
452 |
_tThe Elements of Statistical Learning _bTexte imprimé _y9781071621226 |
||
606 |
_3028627008 _aStatistiques _2rameau |
||
606 |
_3035198222 _aExploration de données _2rameau |
||
606 |
_3027940373 _aApprentissage automatique _2rameau |
||
606 |
_3027234541 _aIntelligence artificielle _2rameau |
||
606 | 2 |
_aArtificial Intelligence (incl. Robotics) _2lc |
|
606 | 2 |
_aStatistical Theory and Methods _2lc |
|
606 | 2 |
_aComputational Biology/Bioinformatics _2lc |
|
606 | 2 |
_aComputer Appl. in Life Sciences _2lc |
|
606 | 2 |
_aStatistics for Engineering, Physics, Computer Science, Chemistry & Geosciences _2lc |
|
606 | 2 |
_aData Mining and Knowledge Discovery _2lc |
|
606 |
_aComputer science _2lc |
||
606 |
_aMathematical statistics _2lc |
||
606 |
_aDistribution (Probability theory. _2lc |
||
606 |
_aBiology _xData processing. _2lc |
||
606 |
_aComputational biology _2lc |
||
606 |
_aProbabilities _2lc |
||
606 |
_aStatistics _2lc |
||
606 |
_aArtificial intelligence _2lc |
||
606 |
_aData mining _2lc |
||
606 |
_aBioinformatics _2lc |
||
606 |
_aBioinformatics _2lc |
||
615 |
_a@Mathematics and Statistics _n11649 _2Springer |
||
676 |
_a006.3 _v23 |
||
680 | _aQ334-342 | ||
680 | _aTJ210.2-211.495 | ||
686 |
_a68Q87 _c2000 _2msc |
||
686 |
_a62B15 _c2000 _2msc |
||
700 | 1 |
_3059538473 _aHastie _bTrevor J. _f1953-.... _cmathématicien _4070 |
|
701 | 1 |
_3032895321 _aTibshirani _bRobert John _f1956-.... _cbiostatisticien _4070 |
|
701 | 1 |
_3063807998 _aFriedman _bJerome H. _f1939-.... _4070 |
|
702 | 1 |
_3032895321 _aTibshirani _bRobert John _f1956-.... _cbiostatisticien _4070 |
|
702 | 1 |
_3063807998 _aFriedman _bJerome H. _f1939-.... _4070 |
|
856 | 4 |
_qPDF _uhttps://doi.org/10.1007/978-0-387-84858-7 _zAccès sur la plateforme de l'éditeur |
|
856 | 4 |
_uhttps://revue-sommaire.istex.fr/ark:/67375/8Q1-1RXNF8M1-C _zAccès sur la plateforme Istex |