000 06466clm0a2200841 4500
001 14928
009 134127897
003 http://www.sudoc.fr/134127897
005 20250630092459.0
010 _a9780387848587
017 7 0 _a10.1007/978-0-387-84858-7
_2DOI
090 _a14928
099 _tOUVR
_zALEX29754
100 _a20090610f20 k y0frey50 ba
101 0 _aeng
_2639-2
102 _aUS
105 _ay a 001yy
135 _adr|||||||||||
181 _6z01
_ctxt
_2rdacontent
181 1 _6z01
_ai#
_bxxxe##
182 _6z01
_cc
_2rdamedia
182 1 _6z01
_ab
183 1 _6z01
_aceb
_2RDAfrCarrier
200 1 _a˜The œelements of statistical learning
_edata mining, inference, and prediction
_fTrevor Hastie, Robert Tibshirani, Jerome Friedman
205 _aSecond edition
214 0 _aNew York, NY
_cSpringer New York
214 2 _aCham
_cSpringer Nature
_d[20..]
225 0 _aSpringer Series in Statistics
_x2197-568X
320 _aBibliogr. p. [699]-727 de l'édition imprimée Index
327 1 _aOverview of Supervised Learning
_aLinear Methods for Regression
_aLinear Methods for Classification
_aBasis Expansions and Regularization
_aKernel Smoothing Methods
_aModel Assessment and Selection
_aModel Inference and Averaging
_aAdditive Models, Trees, and Related Methods
_aBoosting and Additive Trees
_aNeural Networks
_aSupport Vector Machines and Flexible Discriminants
_aPrototype Methods and Nearest-Neighbors
_aUnsupervised Learning
_aRandom Forests
_aEnsemble Learning
_aUndirected Graphical Models
_aHigh-Dimensional Problems: p ? N
330 _aDuring the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression and path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for ``wide'' data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting
371 0 _aAccès en ligne pour les établissements français bénéficiaires des licences nationales
371 0 _aAccès soumis à abonnement pour tout autre établissement
371 1 _aConditions particulières de réutilisation pour les bénéficiaires des licences nationales
_chttps://www.licencesnationales.fr/springer-nature-ebooks-contrat-licence-ln-2017
410 _0161243738
_tSpringer series in statistics (Internet)
_x2197-568X
452 _0159033705
_t˜The œelements of statistical learning
_odata mining, inference, and prediction
_fTrevor Hastie, Robert Tibshirani, Jerome Friedman
_e2nd edition, corrected at 5th printing
_p1 vol. (XXII- 745 p.)
_sSpringer series in statistics
452 _t˜The œElements of Statistical Learning
_bTexte imprimé
_y9780387848846
452 _t˜The œElements of Statistical Learning
_bTexte imprimé
_y9780387848570
452 _t˜The œElements of Statistical Learning
_bTexte imprimé
_y9781071621226
606 _3028627008
_aStatistiques
_2rameau
606 _3035198222
_aExploration de données
_2rameau
606 _3027940373
_aApprentissage automatique
_2rameau
606 _3027234541
_aIntelligence artificielle
_2rameau
606 2 _aArtificial Intelligence (incl. Robotics)
_2lc
606 2 _aStatistical Theory and Methods
_2lc
606 2 _aComputational Biology/Bioinformatics
_2lc
606 2 _aComputer Appl. in Life Sciences
_2lc
606 2 _aStatistics for Engineering, Physics, Computer Science, Chemistry & Geosciences
_2lc
606 2 _aData Mining and Knowledge Discovery
_2lc
606 _aComputer science
_2lc
606 _aMathematical statistics
_2lc
606 _aDistribution (Probability theory.
_2lc
606 _aBiology
_xData processing.
_2lc
606 _aComputational biology
_2lc
606 _aProbabilities
_2lc
606 _aStatistics
_2lc
606 _aArtificial intelligence
_2lc
606 _aData mining
_2lc
606 _aBioinformatics
_2lc
606 _aBioinformatics
_2lc
615 _a@Mathematics and Statistics
_n11649
_2Springer
676 _a006.3
_v23
680 _aQ334-342
680 _aTJ210.2-211.495
686 _a68Q87
_c2000
_2msc
686 _a62B15
_c2000
_2msc
700 1 _3059538473
_aHastie
_bTrevor J.
_f1953-....
_cmathématicien
_4070
701 1 _3032895321
_aTibshirani
_bRobert John
_f1956-....
_cbiostatisticien
_4070
701 1 _3063807998
_aFriedman
_bJerome H.
_f1939-....
_4070
702 1 _3032895321
_aTibshirani
_bRobert John
_f1956-....
_cbiostatisticien
_4070
702 1 _3063807998
_aFriedman
_bJerome H.
_f1939-....
_4070
856 4 _qPDF
_uhttps://doi.org/10.1007/978-0-387-84858-7
_zAccès sur la plateforme de l'éditeur
856 4 _uhttps://revue-sommaire.istex.fr/ark:/67375/8Q1-1RXNF8M1-C
_zAccès sur la plateforme Istex