000 03597cam0a2200541 4500
001 15426
009 084759550
003 http://www.sudoc.fr/084759550
005 20250630092525.0
010 _a9780120884094
_brel.
010 _a0-12-088409-7
_brel.
073 1 _a9780120884094
090 _a15426
099 _tOUVR
_zALEX30708
100 _a20050323h20042004k y0frey50 ba
101 0 _aeng
_2639-2
102 _aUS
105 _aa a 001yy
106 _ar
181 _6z01
_ctxt
_2rdacontent
181 1 _6z01
_ai#
_bxxxe##
182 _6z01
_cn
_2rdamedia
182 1 _6z01
_an
183 1 _6z01
_anga
_2RDAfrCarrier
200 1 _aRandom matrices
_fMadan Lal Mehta
205 _a3rd edition
210 _aAmsterdam
_aBoston
_aParis [etc.]
_cElsevier
_cAcademic Press
_dcop. 2004
215 _a1 vol. (XVIII-688 p.)
_cill.
_d24 cm
225 2 _aPure and applied mathematics series
_v142
320 _aBibliogr. p. 655-679. Index
359 2 _bChapter 1. Introduction
_bChapter 2. Gaussian ensembles. The joint probability density function for the matrix elements
_bChapter 3. Gaussian ensembles. The joint probability density function for the eigenvalues
_bChapter 4. Gaussian ensembles level density
_bChapter 5. Orthogonal, skew-orthogonal and bi-orthogonal polynomials
_bChapter 6. Gaussian unitary ensemble
_bChapter 7. Gaussian orthogonal ensemble
_bChapter 8. Gaussian symplectic ensemble
_bChapter 9. Gaussian ensembles : brownian motion model
_bChapter 10. Circular ensembles
_bChapter 11. Circular ensembles (continued)
_bChapter 12. Circular ensembles. Thermodynamics
_bChapter 13. Gaussian ensemble of anti-symmetric hermitian matrices
_bChapter 14. a gaussian ensemble for hermitian matrices with unequal real and imaginary parts
_bChapter 15. Matrices with gaussian element desnsities but with non unitary or hermitian conditions imposed
_bChapter 16. Statistical analysis of a level-sequence
_bChapter 17. Selberg's integral and its consequences
_bChapter 18. Asymptotic behaviour of Eβ(0,s) by inverse scattering
_bChapter 19. Matrix ensembles and classical orthogonal polynomials
_bChapter 20. Level spacing functions Eβ(r,s) : inter-relations and power series expansions
_bChapter 21. Fredholm determinants and Painlevé equations
_bChapter 22. Moments of the characteristics polynomila in the three ensembles of random matrices
_bChapter 23. Hermitian matrices coupled in a chain
_bChapter 24. Gaussian ensembles. Edge of the spectrum
_bChapter 25. Random permutations, circular unitary ensemble (CUE) and gaussian unitary ensemble (GUE)
_bChapter 26. Probability densities of the determinants ; Gaussian ensembles
_bChapter 27. Restrited trace ensembles
_bAppendices
410 _0038874148
_tPure and applied mathematics (New York. 1949)
_x0079-8169
_v142
606 _303148638X
_aMatrices aléatoires
_2rameau
606 _3027838374
_aMatrices, Mécanique des
_3027551385
_xModèles mathématiques
_2rameau
606 _3027834972
_aPerturbation (théorie quantique)
_2rameau
606 _302731569X
_aThéorie quantique
_2rameau
606 _302783347X
_aNiveaux d'énergie (théorie quantique)
_3027545555
_xMéthodes statistiques
_2rameau
606 _aEnergy levels (Quantum mechanics)
_xStatistical methods
_2lc
606 _aRandom matrices
_2lc
676 _a530.12
_v21
_zfre
680 _aQC174.45
_b.M444 1990
686 _a82-02
_c2000
_2msc
686 _a15-02
_c2000
_2msc
686 _a15A52
_c2000
_2msc
686 _a60B99
_c2000
_2msc
686 _a60K35
_c2000
_2msc
686 _a82B41
_c2000
_2msc
700 1 _3031641946
_aMehta
_bMadan Lal
_f1932-2006
_4070