000 04453clm0a2200565 4500
001 15785
009 248596926
003 http://www.sudoc.fr/248596926
005 20250630092542.0
010 _a9783030484088
017 7 0 _a10.1007/978-3-030-48408-8
_2DOI
090 _a15785
099 _tOUVR
_zALEX31357
100 _a20200821d2020 u |0frey50 ba
101 0 _aeng
_2639-2
102 _aDE
105 _ay |||||||||
135 _adr|||||||||||
181 _6z01
_ctxt
_2rdacontent
181 1 _6z01
_ai#
_bxxxe##
182 _6z01
_cc
_2rdamedia
182 1 _6z01
_ab
183 1 _6z01
_aceb
_2RDAfrCarrier
200 1 _aProbability and Stochastic Processes for Physicists
_fby Nicola Cufaro Petroni
205 _a1st ed. 2020.
214 0 _aCham
_cSpringer International Publishing
_d2020
225 0 _aUNITEXT for Physics
_x2198-7890
230 _aDonnées textuelles
327 1 _aPart 1: Probability
_aChapter 1. Probability spaces
_aChapter 2. Distributions
_aChapter 3. Random variables
_aChapter 4. Limit theorems
_aPart 2: Stochastic Processes
_aChapter 5. General notions
_aChapter 6. Heuristic definitions
_aChapter 7. Markovianity
_aChapter 8. An outline of stochastic calculus
_aPart 3: Physical modeling
_aChapter 9. Dynamical theory of Brownian motion
_aChapter 10. Stochastic mechanics
_aPart 4: Appendices
_aA Consistency (Sect. 2.3.4)
_aB Inequalities (Sect. 3.3.2)
_aC Bertrand's paradox (Sect. 3.5.1)
_aD Lp spaces of rv's (Sect. 4.1)
_aE Moments and cumulants (Sect. 4.2.1)
_aF Binomial limit theorems (Sect. 4.3)
_aG Non uniform point processes (Sect 6.1.1)
_aH Stochastic calculus paradoxes (Sect. 6.4.2)
_aI Pseudo-Markovian processes (Sect. 7.1.2)
_aJ Fractional Brownian motion (Sect. 7.1.10)
_aK Ornstein-Uhlenbeck equations (Sect. 7.2.4)
_aL Stratonovich integral (Sect. 8.2.2)
_aM Stochastic bridges (Sect. 10.2)
_aN Kinematics of Gaussian diffusions (Sect. 10.3.1)
_aO Substantial operators (Sect. 10.3.3)
_aP Constant diffusion coefficients (Sect. 10.4).
330 _aThis book seeks to bridge the gap between the parlance, the models, and even the notations used by physicists and those used by mathematicians when it comes to the topic of probability and stochastic processes. The opening four chapters elucidate the basic concepts of probability, including probability spaces and measures, random variables, and limit theorems. Here, the focus is mainly on models and ideas rather than the mathematical tools. The discussion of limit theorems serves as a gateway to extensive coverage of the theory of stochastic processes, including, for example, stationarity and ergodicity, Poisson and Wiener processes and their trajectories, other Markov processes, jump-diffusion processes, stochastic calculus, and stochastic differential equations. All these conceptual tools then converge in a dynamical theory of Brownian motion that compares the Einstein-Smoluchowski and Ornstein-Uhlenbeck approaches, highlighting the most important ideas that finally led to a connection between the Schrödinger equation and diffusion processes along the lines of Nelson's stochastic mechanics. A series of appendices cover particular details and calculations, and offer concise treatments of particular thought-provoking topics.
337 _aNécessite un lecteur de fichier PDF
371 0 _aL'accès complet à la ressource est réservé aux usagers des établissements qui en ont fait l'acquisition
410 _0234521570
_tUNITEXT for physics (Online)
_x2198-7890
452 _0253505216
_tProbability and stochastic processes for physicists
_fNicola Cufaro Petroni
_p1 vol. (XIII-373 p.)
_sUNITEXT for physics
452 _tProbability and Stochastic Processes for Physicists
_bTexte imprimé
_y9783030484095
452 _tProbability and Stochastic Processes for Physicists
_bTexte imprimé
_y9783030484101
606 _aPhysics
_2lc
606 _aProbabilities
_2lc
606 _aMathematical physics
_2lc
606 _aDynamics
_2lc
606 _aErgodic theory
_2lc
606 _aVibration
_2lc
606 _aDynamical systems
_2lc
606 _aQuantum physics
_2lc
615 _aPhysics and Astronomy
_n11651
_2Springer
676 _a530.15
_v23
680 _aQC5.53
700 1 _aCufaro Petroni
_bNicola
_4070
856 4 _qPDF
_uhttps://doi.org/10.1007/978-3-030-48408-8
_wDonnées éditeur
856 _uhttp://link.springer.com/openurl?genre=book&isbn=978-3-030-48408-8
_zLivre électronique