000 03597cam0a2200553 4500
001 15999
009 269401563
003 http://www.sudoc.fr/269401563
005 20250630092553.0
010 _a9783319484860
_bbr.
073 1 _a9783319484860
090 _a15999
099 _tOUVR
_zALEX31763
100 _a20230426h20172017k y0frey50 ba
101 0 _aeng
_2639-2
102 _aCH
105 _aa a 001yy
106 _ar
181 _6z01
_ctxt
_2rdacontent
181 1 _6z01
_ai#
_bxxxe##
182 _6z01
_cn
_2rdamedia
182 1 _6z01
_an
183 1 _6z01
_anga
_2RDAfrCarrier
200 1 _a˜An œintroduction to integrable techniques for one-dimensional quantum systems
_fFabio Franchini
214 0 _aCham
_cSpringer
214 4 _dC 2017
215 _a1 vol. (xii-180 pages)
_cillustrations en noir et en couleur
_d24 cm
225 0 _aLecture notes in physics
_x0075-8450
_vvolume 940
320 _aBibliographie pages 171-177. Index
330 _aThis book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture
_24e de couverture
359 2 _bThe XY Chain
_bThe Lieb-Liniger Model
_bThe Heisenberg chain
_bThe XXZ Chain
_bAlgebraic Bethe Ansatz
_bAppendix A. Asymptotic behavior of Toeplitz Determinants
_bAppendix B. Two-Dimensional Classical Integrable Systems
_bAppendix C. Field theory and finite size effects
_bReferences
410 _0013305018
_tLecture notes in physics
_x0075-8450
_v940
452 _020147106X
_t˜An œIntroduction to Integrable Techniques for One-Dimensional Quantum Systems
_fby Fabio Franchini.
_e1st ed. 2017.
_sLecture Notes in Physics
606 _aBethe-ansatz technique
_2lc
606 _aMathematical physics
_2lc
606 _aAlgebraic geometry
_2lc
606 _aCondensed matter
_2lc
606 _3061605808
_aBethe, Ansatz de
_2rameau
606 _3027801284
_aPhysique mathématique
_2rameau
606 _3027228002
_aGéométrie algébrique
_2rameau
606 _3027578534
_aMatière condensée
_2rameau
676 _a530.12
_v23
680 _aQC20.7.B47
_bF73 2017
686 _a82-02
_c2020
_2msc
686 _a82Bxx
_c2020
_2msc
686 _a82D40
_c2020
_2msc
686 _a81R50
_c2020
_2msc
700 1 _3269401555
_aFranchini
_bFabio
_f19..-....
_4070
856 _uhttp://link.springer.com/openurl?genre=book&isbn=978-3-319-48487-7
_zLivre &eacute;lectronique <br />