000 | 03597cam0a2200553 4500 | ||
---|---|---|---|
001 | 15999 | ||
009 | 269401563 | ||
003 | http://www.sudoc.fr/269401563 | ||
005 | 20250630092553.0 | ||
010 |
_a9783319484860 _bbr. |
||
073 | 1 | _a9783319484860 | |
090 | _a15999 | ||
099 |
_tOUVR _zALEX31763 |
||
100 | _a20230426h20172017k y0frey50 ba | ||
101 | 0 |
_aeng _2639-2 |
|
102 | _aCH | ||
105 | _aa a 001yy | ||
106 | _ar | ||
181 |
_6z01 _ctxt _2rdacontent |
||
181 | 1 |
_6z01 _ai# _bxxxe## |
|
182 |
_6z01 _cn _2rdamedia |
||
182 | 1 |
_6z01 _an |
|
183 | 1 |
_6z01 _anga _2RDAfrCarrier |
|
200 | 1 |
_aAn introduction to integrable techniques for one-dimensional quantum systems _fFabio Franchini |
|
214 | 0 |
_aCham _cSpringer |
|
214 | 4 | _dC 2017 | |
215 |
_a1 vol. (xii-180 pages) _cillustrations en noir et en couleur _d24 cm |
||
225 | 0 |
_aLecture notes in physics _x0075-8450 _vvolume 940 |
|
320 | _aBibliographie pages 171-177. Index | ||
330 |
_aThis book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and the choice of topics, this book tries to touch all fundamental ideas behind integrability and is meant for students and researchers interested either in an introduction to later delve in the advance aspects of Bethe Ansatz or in an overview of the topic for broadening their culture _24e de couverture |
||
359 | 2 |
_bThe XY Chain _bThe Lieb-Liniger Model _bThe Heisenberg chain _bThe XXZ Chain _bAlgebraic Bethe Ansatz _bAppendix A. Asymptotic behavior of Toeplitz Determinants _bAppendix B. Two-Dimensional Classical Integrable Systems _bAppendix C. Field theory and finite size effects _bReferences |
|
410 |
_0013305018 _tLecture notes in physics _x0075-8450 _v940 |
||
452 |
_020147106X _tAn Introduction to Integrable Techniques for One-Dimensional Quantum Systems _fby Fabio Franchini. _e1st ed. 2017. _sLecture Notes in Physics |
||
606 |
_aBethe-ansatz technique _2lc |
||
606 |
_aMathematical physics _2lc |
||
606 |
_aAlgebraic geometry _2lc |
||
606 |
_aCondensed matter _2lc |
||
606 |
_3061605808 _aBethe, Ansatz de _2rameau |
||
606 |
_3027801284 _aPhysique mathématique _2rameau |
||
606 |
_3027228002 _aGéométrie algébrique _2rameau |
||
606 |
_3027578534 _aMatière condensée _2rameau |
||
676 |
_a530.12 _v23 |
||
680 |
_aQC20.7.B47 _bF73 2017 |
||
686 |
_a82-02 _c2020 _2msc |
||
686 |
_a82Bxx _c2020 _2msc |
||
686 |
_a82D40 _c2020 _2msc |
||
686 |
_a81R50 _c2020 _2msc |
||
700 | 1 |
_3269401555 _aFranchini _bFabio _f19..-.... _4070 |
|
856 |
_uhttp://link.springer.com/openurl?genre=book&isbn=978-3-319-48487-7 _zLivre électronique <br /> |