000 03238cam0a2200445 4500
001 16033
009 268710074
003 http://www.sudoc.fr/268710074
005 20250630092555.0
010 _a9783030343934
_bbr.
090 _a16033
099 _tOUVR
_zALEX31893
100 _a20230327h20192019u y0frey50 ba
101 0 _aeng
_2639-2
102 _aCH
105 _ay ||||001yy
106 _ar
181 _6z01
_ctxt
_2rdacontent
181 1 _6z01
_ai#
_bxxxe##
182 _6z01
_cn
_2rdamedia
182 1 _6z01
_an
183 1 _6z01
_anga
_2RDAfrCarrier
200 1 _aStatistical Physics of Non Equilibrium Quantum Phenomena
_fby Yves Pomeau
_gMinh-Binh Tran
214 0 _aCham
_cSpringer International Publishing
_d2019
215 _a1 vol. (227 p.)
_d24 cm
225 2 _aLecture Notes in Physics
_x0075-8450
_v967
327 1 _aPart I Statistical Physics of the Interaction of a Single Atom or Ion with Radiation
_aIntroduction
_aThe Kolmogorov Equation for a Two-Level System
_aThe Statistical Theory of Shelving
_aSummary, Conclusion and Appendix of Part 1
_aPart II Statistical Physics of Dilute Bose Gases
_aIntroduction
_aQuantum Boltzmann Equations
_aFormation of Singularities
_aHydrodynamic Approximations
_aEquilibrium Properties of a Dilute Bose Gas with Small Coupling at First Order
_aMathematical Analysis of the Coupling Condensate -Thermal Cloud Systems. .
330 _aThis book provides an introduction to topics in non-equilibrium quantum statistical physics for both mathematicians and theoretical physicists. The first part introduces a kinetic equation, of Kolmogorov type, which is needed to describe an isolated atom (actually, in experiments, an ion) under the effect of a classical pumping electromagnetic field which keeps the atom in its excited state(s) together with the random emission of fluorescence photons which put it back into its ground state. The quantum kinetic theory developed in the second part is an extension of Boltzmann's classical (non-quantum) kinetic theory of a dilute gas of quantum bosons. This is the source of many interesting fundamental questions, particularly because, if the temperature is low enough, such a gas is known to have at equilibrium a transition, the Bose-Einstein transition, where a finite portion of the particles stay in the quantum ground state. An important question considered is how a Bose gas condensate develops in time if its energy is initially low enough.
410 _0013305018
_tLecture notes in physics
_x0075-8450
452 _0258058714
_tStatistical Physics of Non Equilibrium Quantum Phenomena
_fby Yves Pomeau
_e1st ed. 2019.
_sLecture Notes in Physics
606 _3027393348
_aPhysique statistique
_2rameau
606 _3027224198
_aÉquations différentielles paraboliques
_2rameau
606 _aStatistical physics
_2lc
606 _aPartial differential equations
_2lc
615 _aPhysics and Astronomy
_n11651
_2Springer.
676 _a530.1
_v23
680 _aQC174.7-175.36
700 1 _3031838596
_aPomeau
_bYves
_f1942-....
_cphysicien
_4070
701 1 _3158166221
_aTran
_bMinh Binh
_f1985-....
_4070
856 _uhttp://link.springer.com/openurl?genre=book&isbn=978-3-030-34394-1
_zLivre &eacute;lectronique<br /