000 02195cam0a2200409 4500
001 16774
009 250886774
003 http://www.sudoc.fr/250886774
005 20250630092634.0
010 _a9782856299289
_bbr.
_d35 EUR
073 1 _a9782856299289
090 _a16774
099 _tOUVR
_zALEX33332
100 _a20201201h20202020k y0frey50 ba
101 0 _aeng
_deng
_dfre
_2639-2
102 _aFR
105 _aa a 000yy
106 _ar
181 _6z01
_ctxt
_2rdacontent
181 1 _6z01
_ai#
_bxxxe##
182 _6z01
_cn
_2rdamedia
182 1 _6z01
_an
183 1 _6z01
_anga
_2RDAfrCarrier
200 1 _a˜The œspectrum of a Schrödinger operator in a wire-like domain with a purely imaginary degenerate potential in the semiclassical limit
_fY. Almog, B. Helffer
214 0 _aParis
_cSociété mathématique de France
_d2020
215 _a1 vol. (vi-94 p.)
_cill.
_d24 cm
302 _aRésumé en anglais et en français
305 _aN° de : "Mémoires de la Société mathématique de France", ISSN 0249-633X, (2020)n°166
320 _aBibliogr. p. [91]-92
330 _aConsider a two-dimensional domain shaped like a wire, not necessarily of uniform cross section. Let V denote an electric potential driven by a voltage drop between the conducting surfaces of the wire. We consider the operator Ah=−h2Δ+iV in the semi-classical limit h→0. We obtain both the asymptotic behavior of the left margin of the spectrum, as well as resolvent estimates on the left side of this margin. We extend here previous results obtained for potentials for which the set where the current (or ∇V) is normal to the boundary is discrete, in contrast with the present case where V is constant along the conducting surfaces. [source : 4e de couv.]
461 _0039418073
_tMémoire de la Société mathématique de France
_x0249-633X
_v166
606 _3027878457
_aSchrödinger, Opérateur de
_2rameau
606 _3154299502
_aThéorie de Ginzburg-Landau
_2rameau
686 _a35P15
_c2000
_2msc
686 _a82D55
_c2000
_2msc
700 1 _3250885980
_aAlmog
_bYaniv
_f19..-....
_cmathématicien
_4070
701 1 _3031772757
_aHelffer
_bBernard
_f1949-....
_4070