000 | 05652cam0a2200433 4500 | ||
---|---|---|---|
001 | 3803 | ||
009 | 00458581X | ||
003 | http://www.sudoc.fr/00458581X | ||
005 | 20250630091416.0 | ||
010 | _a0471175706 | ||
020 |
_aUS _b76129657 //r892 |
||
090 | _a3803 | ||
099 |
_tOUVR _zALEX15851 |
||
100 | _a19990302h19711971k y0frey50 ba | ||
101 | 0 |
_aeng _2639-2 |
|
102 | _aUS | ||
105 | _aa a 001yy | ||
106 | _ar | ||
181 |
_6z01 _ctxt _2rdacontent |
||
181 | 1 |
_6z01 _ai# _bxxxe## |
|
182 |
_6z01 _cn _2rdamedia |
||
182 | 1 |
_6z01 _an |
|
183 | 1 |
_6z01 _anga _2RDAfrCarrier |
|
200 | 1 |
_aChemical applications of group theory _fF. Albert Cotton |
|
205 | _a2nd edition | ||
214 | 0 |
_aNew York [etc.] _cWiley-Interscience |
|
214 | 4 | _dC 1971 | |
215 |
_a1 vol. (XIV-386 p.) _cill. _d23 cm _e1 fascicule sous pochette |
||
320 | _aBibliogr. p. 380-382. Index | ||
359 | 2 |
_bPart I. Principles _pP. 1 _c1. Introduction _pP. 4 _c2. Definitions and theorems of group theory _pP. 4 _d2.1 The defining properties of a group _pP. 6 _d2.2 Some examples of groups _pP. 10 _d2.3 Subgroups _pP. 11 _d2.4 Classes _pP. 13 _dExercises _pP. 14 _c3. Molecular symmetry and the symmetry groups _pP. 14 _d3.1 General remarks _pP. 14 _d3.2 Symmetry elements and operation _pP. 16 _d3.3 Symmetry planes and reflections _pP. 19 _d3.4 The invasion center _pP. 19 _d3.5 Proper axes and proper rotations _pP. 24 _d3.6 Improper axes and improper rotations _pP. 27 _d3.7 Products of symmetry operations _pP. 29 _d3.8 Equivalent symmetry elements and equivalent atoms _pP. 31 _d3.9 General relations among symmetry elements and operations _pP. 32 _d3.10 Symmetry elements and optical isomerism _pP. 33 _d3.11 The symmetry point groups _pP. 39 _d3.12 Symmetries with multiple high-order axes _pP. 45 _d3.13 A systematic procedure for symmetry classification of molecules _pP. 47 _d3.14 Illustrative examples _pP. 52 _d3.15 Classes of symmetry operations _pP. 56 _dExercises _pP. 62 _c4. Representations of groups _pP. 62 _d4.1 Some Properties of matrices and vectors _pP. 75 _d4.2 Representations of groups _pP. 78 _d4.3 The "great orthogonality theorem" and its consequences _pP. 86 _d4.4 Character tables _pP. 88 _d4.5 Representations for cyclic groups _pP. 92 _dExercises _pP. 93 _c5. Group theory and quantum mechanics _pP. 93 _d5.1 Wave functions as bases for irreducible representations _pP. 98 _d5.2 The direct product _pP. 101 _d5.3 Identifying non zero matrix elements _pP. 104 _dExercises _pP. 105 _c6. Symmetry-adapted linear combinations _pP. 105 _d6.1 Introductory remarks _pP. 105 _d6.2 Projection operators _pP. 111 _d6.3 Some illustrations _pP. 119 _dExercises _bPart II. Applications _pP. 123 _c7. Symmetry aspects of molecular orbital theory _pP. 123 _d7.1 General principles _pP. 130 _d7.2 Symmetry factoring of secular equations _pP. 133 _d7.3 Carbocyclic systems _pP. 149 _d7.4 More general cases of LCAO-MO π bonding _pP. 161 _d7.5 A worked example : naphthalene _pP. 165 _d7.6 Electronic excitations of naphthalene : selection rules and configuration interaction _pP. 170 _d7.7 Three-center bonding _pP. 178 _d7.8 Symmetry-based "selection rules" for cyclization reactions _pP. 191 _dExercises _pP. 194 _c8. Hybrid orbitals and molecular orbitals for ABn-Type molecules _pP. 194 _d8.1 Introduction _pP. 194 _d8.2 Transformation properties of atomic orbitals _pP. 199 _d8.3 Hybridization schemes for σ orbitals _pP. 204 _d8.4 Hybridization schemes for π bonding _pP. 213 _d8.5 Hybrid orbitals as linear combinations of atomic orbitals _pP. 217 _d8.6 Molecular orbitals theory for ABn-type molecules _pP. 222 _d8.7 The relationship of the molecular orbital and the hybridization treatments _pP. 224 _d8.8 Molecular orbitals for regular octahedral and tetrahedral molecules _pP. 230 _d8.9 Molecular orbitals for metal sandwich compounds _pP. 241 _dExercises _pP. 242 _c9. Ligand field theory _pP. 242 _d9.1 Introductory remarks _pP. 243 _d9.2 Electronic structures of free atoms and ions _pP. 249 _d9.3 Splitting of levels and terms in a chemical environment _pP. 254 _d9.4 Construction of energy level diagrams _pP. 272 _d9.5 Estimation of orbital energies _pP. 280 _d9.6 Selection rules and polarizations _pP. 289 _d9.7 Double groups _pP. 294 _dExercises _pP. 295 _c10. Molecular vibrations _pP. 295 _d10.1 Introductory remarks _pP. 295 _d10.2 The symmetry of normal vibrations _pP. 300 _d10.3 Determining the symmetry types of the normal modes _pP. 306 _d10.4 Contributions of particular internal coordinates to normal modes _pP. 309 _d10.5 How to calculate force constants ; The F and G matrix method _pP. 316 _d10.6 Selection rules for fundamental vibrational transitions _pP. 320 _d10.7 Illustrative examples _pP. 330 _d10.8 Some important special effects _pP. 339 _dExercises _bPart III. Appendices _pP. 343 _cI. Crystallographic point groups, stereographic projections and international (Hermann-Maguin) notation _pP. 349 _cII. Expansion of determinants and the inverse of a matrix _pP. 354 _cIII. Character tables for chemically important symmetry groups _pP. 365 _cIV. A caveat concerning the resonance integral _pP. 368 _cV. The shapes of f orbitals _pP. 370 _cVI. A sample semi-empirical molecular orbital calculation : BF3 by the extended Hückel method _pP. 376 _cVII. Character tables for some double groups _pP. 376 _cVIII. Elements of the g matrix _pP. 380 _cIX. Reading list |
|
606 |
_3027351440 _aThéorie des groupes _2rameau |
||
606 |
_3027351602 _aThéorie moléculaire _2rameau |
||
606 |
_3027834921 _aChimie quantique _2rameau |
||
606 |
_3027716910 _aSpectroscopie _2rameau |
||
606 |
_aMolecular theory _2lc |
||
606 |
_aGroup theory _2lc |
||
606 |
_aChemistry _2mesh |
||
676 | _a541/.22/0151222 | ||
700 | 1 |
_3031754260 _aCotton _bFrank Albert _f1930-2007 _4070 |