000 05652cam0a2200433 4500
001 3803
009 00458581X
003 http://www.sudoc.fr/00458581X
005 20250630091416.0
010 _a0471175706
020 _aUS
_b76129657 //r892
090 _a3803
099 _tOUVR
_zALEX15851
100 _a19990302h19711971k y0frey50 ba
101 0 _aeng
_2639-2
102 _aUS
105 _aa a 001yy
106 _ar
181 _6z01
_ctxt
_2rdacontent
181 1 _6z01
_ai#
_bxxxe##
182 _6z01
_cn
_2rdamedia
182 1 _6z01
_an
183 1 _6z01
_anga
_2RDAfrCarrier
200 1 _aChemical applications of group theory
_fF. Albert Cotton
205 _a2nd edition
214 0 _aNew York [etc.]
_cWiley-Interscience
214 4 _dC 1971
215 _a1 vol. (XIV-386 p.)
_cill.
_d23 cm
_e1 fascicule sous pochette
320 _aBibliogr. p. 380-382. Index
359 2 _bPart I. Principles
_pP. 1
_c1. Introduction
_pP. 4
_c2. Definitions and theorems of group theory
_pP. 4
_d2.1 The defining properties of a group
_pP. 6
_d2.2 Some examples of groups
_pP. 10
_d2.3 Subgroups
_pP. 11
_d2.4 Classes
_pP. 13
_dExercises
_pP. 14
_c3. Molecular symmetry and the symmetry groups
_pP. 14
_d3.1 General remarks
_pP. 14
_d3.2 Symmetry elements and operation
_pP. 16
_d3.3 Symmetry planes and reflections
_pP. 19
_d3.4 The invasion center
_pP. 19
_d3.5 Proper axes and proper rotations
_pP. 24
_d3.6 Improper axes and improper rotations
_pP. 27
_d3.7 Products of symmetry operations
_pP. 29
_d3.8 Equivalent symmetry elements and equivalent atoms
_pP. 31
_d3.9 General relations among symmetry elements and operations
_pP. 32
_d3.10 Symmetry elements and optical isomerism
_pP. 33
_d3.11 The symmetry point groups
_pP. 39
_d3.12 Symmetries with multiple high-order axes
_pP. 45
_d3.13 A systematic procedure for symmetry classification of molecules
_pP. 47
_d3.14 Illustrative examples
_pP. 52
_d3.15 Classes of symmetry operations
_pP. 56
_dExercises
_pP. 62
_c4. Representations of groups
_pP. 62
_d4.1 Some Properties of matrices and vectors
_pP. 75
_d4.2 Representations of groups
_pP. 78
_d4.3 The "great orthogonality theorem" and its consequences
_pP. 86
_d4.4 Character tables
_pP. 88
_d4.5 Representations for cyclic groups
_pP. 92
_dExercises
_pP. 93
_c5. Group theory and quantum mechanics
_pP. 93
_d5.1 Wave functions as bases for irreducible representations
_pP. 98
_d5.2 The direct product
_pP. 101
_d5.3 Identifying non zero matrix elements
_pP. 104
_dExercises
_pP. 105
_c6. Symmetry-adapted linear combinations
_pP. 105
_d6.1 Introductory remarks
_pP. 105
_d6.2 Projection operators
_pP. 111
_d6.3 Some illustrations
_pP. 119
_dExercises
_bPart II. Applications
_pP. 123
_c7. Symmetry aspects of molecular orbital theory
_pP. 123
_d7.1 General principles
_pP. 130
_d7.2 Symmetry factoring of secular equations
_pP. 133
_d7.3 Carbocyclic systems
_pP. 149
_d7.4 More general cases of LCAO-MO π bonding
_pP. 161
_d7.5 A worked example : naphthalene
_pP. 165
_d7.6 Electronic excitations of naphthalene : selection rules and configuration interaction
_pP. 170
_d7.7 Three-center bonding
_pP. 178
_d7.8 Symmetry-based "selection rules" for cyclization reactions
_pP. 191
_dExercises
_pP. 194
_c8. Hybrid orbitals and molecular orbitals for ABn-Type molecules
_pP. 194
_d8.1 Introduction
_pP. 194
_d8.2 Transformation properties of atomic orbitals
_pP. 199
_d8.3 Hybridization schemes for σ orbitals
_pP. 204
_d8.4 Hybridization schemes for π bonding
_pP. 213
_d8.5 Hybrid orbitals as linear combinations of atomic orbitals
_pP. 217
_d8.6 Molecular orbitals theory for ABn-type molecules
_pP. 222
_d8.7 The relationship of the molecular orbital and the hybridization treatments
_pP. 224
_d8.8 Molecular orbitals for regular octahedral and tetrahedral molecules
_pP. 230
_d8.9 Molecular orbitals for metal sandwich compounds
_pP. 241
_dExercises
_pP. 242
_c9. Ligand field theory
_pP. 242
_d9.1 Introductory remarks
_pP. 243
_d9.2 Electronic structures of free atoms and ions
_pP. 249
_d9.3 Splitting of levels and terms in a chemical environment
_pP. 254
_d9.4 Construction of energy level diagrams
_pP. 272
_d9.5 Estimation of orbital energies
_pP. 280
_d9.6 Selection rules and polarizations
_pP. 289
_d9.7 Double groups
_pP. 294
_dExercises
_pP. 295
_c10. Molecular vibrations
_pP. 295
_d10.1 Introductory remarks
_pP. 295
_d10.2 The symmetry of normal vibrations
_pP. 300
_d10.3 Determining the symmetry types of the normal modes
_pP. 306
_d10.4 Contributions of particular internal coordinates to normal modes
_pP. 309
_d10.5 How to calculate force constants ; The F and G matrix method
_pP. 316
_d10.6 Selection rules for fundamental vibrational transitions
_pP. 320
_d10.7 Illustrative examples
_pP. 330
_d10.8 Some important special effects
_pP. 339
_dExercises
_bPart III. Appendices
_pP. 343
_cI. Crystallographic point groups, stereographic projections and international (Hermann-Maguin) notation
_pP. 349
_cII. Expansion of determinants and the inverse of a matrix
_pP. 354
_cIII. Character tables for chemically important symmetry groups
_pP. 365
_cIV. A caveat concerning the resonance integral
_pP. 368
_cV. The shapes of f orbitals
_pP. 370
_cVI. A sample semi-empirical molecular orbital calculation : BF3 by the extended Hückel method
_pP. 376
_cVII. Character tables for some double groups
_pP. 376
_cVIII. Elements of the g matrix
_pP. 380
_cIX. Reading list
606 _3027351440
_aThéorie des groupes
_2rameau
606 _3027351602
_aThéorie moléculaire
_2rameau
606 _3027834921
_aChimie quantique
_2rameau
606 _3027716910
_aSpectroscopie
_2rameau
606 _aMolecular theory
_2lc
606 _aGroup theory
_2lc
606 _aChemistry
_2mesh
676 _a541/.22/0151222
700 1 _3031754260
_aCotton
_bFrank Albert
_f1930-2007
_4070