000 02230cam0a2200481 4500
001 7471
009 08130336X
003 http://www.sudoc.fr/08130336X
005 20250630091756.0
010 _a0387219064
_brel.
010 _a978-0-387-21906-6
_brel.
020 _aUS
_b2004046862
073 0 _a9780387219066
090 _a7471
099 _tOUVR
_zALEX19755
100 _a20041025d2004 k y0frey50 ba
101 0 _aeng
_2639-2
102 _aUS
105 _aa a 001yy
106 _ar
181 _6z01
_ctxt
_2rdacontent
181 1 _6z01
_ai#
_bxxxe##
182 _6z01
_cn
_2rdamedia
182 1 _6z01
_an
200 1 _aElements of applied bifurcation theory
_fYuri Kuznetsov
205 _aThird edition
210 _aNew York
_cSpringer
_dcop. 2004
215 _a1 vol. (XXII-631 p.)
_cfig.
_d24 cm
225 2 _aApplied mathematical sciences
_v112
320 _aBibliogr. p. [599]-618. Index
359 2 _b1. Introduction to dynamical systems
_b2. Topological equivalence, bifurcations, and structural stability of dynamical systems
_b3. One-parameter bifurcations of equilibria in continuous-time dynamical systems
_b4. One-parameter bifurcations of fixed points in discrete-time dynamical systems
_b5. Bifurcations of equilibria and periodic orbits in n-dimensional dynamical systems
_b6. Bifurcations of orbits homoclinic and heteroclinic to hyperbolic equilibria
_b7. Other one-parameter bifurcations in continuous-time dynamical systems
_b8. Two-parameter bifurcations of equilibria in continuous-time dynamical systems
_b9. Two-parameter bifurcations of fixed points in discrete-time dynamical systems
_b10. Numerical analysis of bifurcations
_bA. Basic notions from algebra, analysis, and geometry
410 _0013284592
_tApplied mathematical sciences
_x0066-5452
_v112
606 _aBifurcation theory
_2lc
606 _3028631560
_aBifurcation, Théorie de la
_2rameau
676 _a510 s
_v22
680 _aQA1
_b.A647 vol. 112 1998b
680 _aQA1
686 _a37Gxx
_c2010
_2msc
686 _a34-04
_c2010
_2msc
686 _a34C23
_c2010
_2msc
686 _a37-04
_c2010
_2msc
686 _a37M20
_c2010
_2msc
700 1 _3057359970
_aKuznetsov
_bIurii Aleksandrovich
_f1957-....
_4070