000 03674cam0a2200481 4500
001 7558
009 148944310
003 http://www.sudoc.fr/148944310
005 20250630091801.0
010 _a9780387709130
_bbr.
020 _aUS
_b2010938382
073 1 _a9780387709130
090 _a7558
099 _tOUVR
_zALEX19844
100 _a20110105h20112011k y0frey50 ba
101 0 _aeng
_2639-2
102 _aUS
_aDE
_aZZ
105 _aa a 001yy
106 _ar
181 _6z01
_ctxt
_2rdacontent
181 1 _6z01
_ai#
_bxxxe##
182 _6z01
_cn
_2rdamedia
182 1 _6z01
_an
183 1 _6z01
_anga
_2RDAfrCarrier
200 1 _aFunctional analysis, Sobolev spaces and partial differential equations
_fHaim Brezis
214 0 _aNew York
_aDordrecht
_aHeidelberg [etc.]
_cSpringer
214 4 _dC 2011
215 _a1 vol. (XIII-599 p.)
_cill.
_d24 cm
225 2 _aUniversitext
311 _aEdition anglaise révisée, mise à jour et étendue avec de nouveaux problèmes et exercices (avec solutions) de l'ouvrage publié en français chez Masson sous le titre : "Analyse fonctionnelle : théorie et applications" (1983)
320 _aBibliogr. p. 585-594. Index.
330 _aUniquely, this book presents a coherent, concise and unified way of combining elements from two distinct “worlds,” functional analysis (FA) and partial differential equations (PDEs), and is intended for students who have a good background in real analysis. This text presents a smooth transition from FA to PDEs by analyzing in great detail the simple case of one-dimensional PDEs (i.e., ODEs), a more manageable approach for the beginner. Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Moreover, the wealth of exercises and additional material presented, leads the reader to the frontier of research. This book has its roots in a celebrated course taught by the author for many years and is a completely revised, updated, and expanded English edition of the important “Analyse Fonctionnelle” (1983). Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English version is a welcome addition to this list. The first part of the text deals with abstract results in FA and operator theory. The second part is concerned with the study of spaces of functions (of one or more real variables) having specific differentiability properties, e.g., the celebrated Sobolev spaces, which lie at the heart of the modern theory of PDEs. The Sobolev spaces occur in a wide range of questions, both in pure and applied mathematics, appearing in linear and nonlinear PDEs which arise, for example, in differential geometry, harmonic analysis, engineering, mechanics, physics etc. and belong in the toolbox of any graduate student studying analysis.
_24e de couverture
410 _0013372300
_tUniversitext (Berlin. Print)
_x0172-5939
452 _0149891326
_tFunctional analysis, Sobolev spaces and partial differential equations
_fHaim Brezis
_sUniversitext
488 _0000750085
_tAnalyse fonctionnelle
_othéorie et applications
_fHaïm Brezis
_p1 vol. (XIV-233 p.)
_sCollection Mathématiques appliquées pour la maîtrise
606 _302735959X
_aAnalyse fonctionnelle
_2rameau
606 _3027554325
_aSobolev, Espaces de
_2rameau
606 _3027225402
_aÉquations aux dérivées partielles
_2rameau
676 _a515.7
_v22
686 _a35Rxx
_c2010
_2msc
686 _a46Sxx
_c2010
_2msc
686 _a47Sxx
_c2010
_2msc
700 1 _3032438249
_aBrézis
_bHaïm
_f1944-2024
_4070